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Resumo

A teoria da Relatividade Geral prevê a existência de buracos negros como constituintes

naturais do nosso Universo. Experiências recentes mostraram que os buracos negros não

só existem, como interagem mutuamente, levando à emissão de energia gravitacional. En-

quanto o binário de buracos negros relaxa para um estado final, o sistema oscila amorte-

cidamente de tal forma que caracteriza completamente o objecto final. Estas oscilações

são descritas por modos quasi-normais que, geralmente, estão presentes em sistemas dissi-

pativos. A teoria de perturbações de buracos negros é um método crucial para investigar

estes processos.

Os modos quasi-normais estão relacionados com a forma como um buraco negro re-

sponde a pequenas perturbações. A maioria dos buracos negros astrof́ısicos parece ser

estável sobre pequenas perturbações, mas existem diversos casos em que um campo de

perturbações pode crescer no tempo, em vez de decair. Estas instabilidades podem ter

uma natureza superradiante, que se traduz numa amplificação da perturbação associ-

ada à diminuição da energia do buraco negro. A análise perturbativa da dinâmica de

buracos negros é crucial em diversos contextos, desde a astrof́ısica até a aspectos mais

fundamentais da Relatividade Geral.

Embora as equações de campo admitam um conhecimento completo da evolução futura

do espaço-tempo, algumas soluções possuem uma fronteira, para lá da qual as equações

de campo perdem o seu poder preditivo. Esta fronteira é chamada horizonte de Cauchy e

define uma região na qual o espaço-tempo pode ser descrito de uma forma não-única. A

existência de horizontes de Cauchy em soluções astrof́ısicamente relevantes das equações

de campo pode ser uma ameaça à natureza preditiva das leis da f́ısica.

A censura cósmica forte serve, de alguma forma, para prevenir esses cenários ao afir-

mar que, genericamente, dados iniciais adequados são inextenśıveis ao futuro para lá do

horizonte de Cauchy como soluções das equações de campo. Estudos recentes indicam

que o destino dos horizontes de Cauchy, como os encontrados no interior de buracos ne-

gros carregados ou em rotação, está intrinsecamente relacionado com o decaimento de
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perturbações no exterior do horizonte de eventos. Como tal, a validade da hipótese da

censura cósmica forte depende de quão eficiente é a dissipação das fluctuações no exterior

do horizonte de eventos.

Nesta tese vamos aplicar uma análise quantitativa à estabilidade dos horizontes de

Cauchy em buracos negros electricamente carregados e imersos num Universo de de Sit-

ter. Vamos mostrar que a censura cósmica forte é violada para buracos negros carregados

quasi-extremos em de Siter, usando perturbações lineares. Para além disso, vamos in-

vestigar uma instabilidade superradiante para campos escalares carregados difundidos

por buracos negros carregados em de Sitter a d-dimensões, e mostrar que o aumento do

número de dimensões diminui a escala de tempo da instabilidade.

Palavras-chave: Buracos negros, Modos quasi-normais, Horizontes de Cauchy, Censura

cósmica forte, Instabilidades superradiantes, Dimensões mais altas
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Abstract

The theory of General Relativity predicts that black holes are a natural constituent of

our Universe. Recent experiments revealed that black holes not only exist, but also

interact with each other, leading to the emission of gravitational energy. Before the black

hole binary relaxes to a final state, it undergoes damped oscillations which completely

characterize the final object. These oscillations are described by quasinormal modes which

are present in many dissipative systems. Black-hole perturbation theory is the key method

to investigate such processes.

Quasinormal modes are linked to the way a black hole spacetime responds to small

fluctuations. Most astrophysical black holes appear to be stable under small perturba-

tions but in various cases a perturbation field might not decay but rather grow in time.

Such instabilities can have a superradiant nature which translates to the amplification

of the perturbation in expense of the black hole’s energy. A perturbative analysis of BH

dynamics is crucial in several contexts, ranging from astrophysics to more fundamental

aspects of General Relativity.

Although the field equations admit a well defined future evolution of spacetime, some

solutions possess a boundary, beyond which the field equations lose their predictive power.

This boundary is called a Cauchy horizon and it designates a region beyond which the

spacetime can be described in a highly non-unique manner. The existence of Cauchy

horizons in astrophysically relevant solutions of the field equations might pose a threat to

the predictive nature of physical laws.

Strong cosmic censorship states that, generically, suitable initial data are future inex-

tendible beyond the Cauchy horizon, as a solution to the field equations. Recent studies

indicate that the fate of Cauchy horizons, such as those found inside charged and rotating

black holes, is intrinsically connected to the decay of perturbations exterior to the event

horizon. As such, the validity of the strong cosmic censorship hypothesis is tied to how

effectively the exterior damps fluctuations.

In this thesis we will perform a quantitative stability analysis of Cauchy horizons in
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electrically charged black holes immersed in a de Sitter Universe. We will provide strong

evidence that strong cosmic censorship is violated for near-extremally charged de Sitter

black holes under linear perturbations. Moreover, we shall investigate a superradiant

instability of charged scalar fields scattering off a d−dimensional electrically charged-de

Sitter black hole and show that the increment of dimensions decreases the timescale of

the instability.

Key words: Black holes, Quasinormal modes, Cauchy horizons, Strong cosmic cen-

sorship, Superradiant instabilities, Higher dimensions
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Introduction

Einstein’s theory of General Relativity (GR) is the most successful theory of gravitation

[1, 2]; it predicts and correctly describes black-hole (BH) spacetimes, gravitational-wave

(GW) emission, cosmic expansion and many more phenomena [3]. It is undoubtedly a

cornerstone of modern theoretical physics and astronomy. GR states that accelerating

masses should produce GWs [4, 5]. GWs are “ripples” in spacetime caused by some of

the most violent and energetic processes in the Universe. Albert Einstein predicted the

existence of GWs in 1916 and since then many tests have been conducted to understand if

GR is the ideal theory which describes gravitation. Very recently, a considerable amount

of effort has been dedicated to the detection of GWs of binary mergers. To be able to

detect such events, though, the objects have to be extremely massive, and moving very

quickly.

For decades, scientists have hoped they could “listen in” on violent astrophysical

events by detecting their emission of GWs. The waves had never been observed directly

until recently [6]. In 2015, scientists reported that they detected such waves at the Laser

Interferometer Gravitational-Wave Observatory (LIGO) in the United States, while the

first GW signal at the Virgo interferometer, in Italy, was detected in 2017 [7]. The

waves were produced by two BHs that orbit each other and finally collide to merge into a

single BH that “shudders” a bit before settling down. GWs were emitted through all these

stages. Several subsequent detections have occurred till date coming from BH [8, 9, 10] and

neutron star (NS) binary mergers [11]. With decades of hard work, theoretical predictions

for these entire processes have been worked out in detail, following the fundamental rules

of Einstein’s theory. These predictions were used to translate the pattern of detected

waves into an understanding of what produced them. The study that deals with the final

stage of a binary merger is based on perturbation theory.
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In GR, isolated BHs in equilibrium are simple objects; they are described by only

a few parameters: their mass, angular momentum and charge [12, 13]. Such simplicity,

however, is lacking in realistic scenarios due to the extraordinary complicated dynamics of

gravitational collapse in BH formation. Additional complexities are introduced by active

galactic nuclei, accretion disks, strong magnetic fields and other stars or planets around

BHs.

Hence, a realistic dynamically evolving BH might never be fully described by only

its basic parameters and can potentially be in a perturbed state indefinitely. Due to

these technical and conceptual difficulties, one must almost always make approximations

to generate physically interesting predictions. In many instances, one is interested in

describing a BH spacetime as a superposition of the unperturbed background plus a very

small perturbation. This approximation is based on perturbation theory. It applies in

situations where the gravitational field is dominated by a known solution of the Einstein

equations. Perturbation theory allows additional sources to be present in the problem as

long as they are weak enough that they generate only a small correction to the overall

geometry.

Once a BH is perturbed, it responds by emitting GWs whose evolution in time is

divided into three stages [14, 15]; an initial outburst of radiation, followed by a long period

of damped proper oscillations dominated by quasinormal-mode (QNM) frequencies, and

finally a late-time tails which suppress the oscillatory phase. Due to the dissipative nature

of perturbed BH, their oscillatory phase cannot be analyzed with standard normal-mode

theory, since the system is not time-symmetric. QNMs [16, 17, 18], thus, are solutions of a

particular eigenvalue problem concerning perturbed BHs and describe the time-dependent

proper oscillations that a BH undergoes. In general, quasinormal frequencies are complex,

the real part being associated with the oscillatory frequency and the imaginary part with

the decay timescale of the perturbation. The corresponding eigenfunctions are usually

non-normalizable, and in general, they do not form a complete basis. Several real-world

physical systems are dissipative, so one might reasonably expect QNMs to be omnipresent

in physics.

A perturbative analysis of BH dynamics is crucial in several contexts, ranging from

astrophysics to high-energy physics [19]. The stability analysis of BH spacetimes, BH

ringdown after binary mergers, GW emission in astrophysical processes and even the

gravity/gauge correspondences are just some noteworthy contexts in which BH pertur-

bation theory is relevant. One of the most interesting phenomena resulting from the

interaction between test fields and BHs are associated with BH superradiance [20]. This
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phenomenon takes place in scattering processes of waves off spinning or charged BHs. Un-

der certain conditions, the test field can be superradiantly amplified at the expense of the

BH rotational or electromagnetic energy [21, 22] which might lead to instabilities. Time

evolutions of perturbations and QNM analyses can unravel such instabilities and predict

the potential end-state of a nonlinearly developed spacetime including a back-reacting

matter field. Besides instabilities of the external BH region, similar phenomena arise in

BH interiors, such as those of charged and rotating BH spacetimes. In many cases, such

instabilities are crucial on the examination of more fundamental aspects of GR.

The fate of an observer plunging into a BH is both an interesting and important

problem within the framework of classical GR. If the observer falls into a neutral static

BH his fate is clear: he will be crushed by the spacelike singularity lurking in the interior of

the BH. The issue of infalling observers takes an unpredictable turn if the BH is charged

or rotating; the observer’s journey appears to continue unaffected through the interior

of the BH and “beyond”, eventually emerging in “another Universe”, however, neither

the geometry of this new region nor the fate of the observer can be determined uniquely

by initial data. Such a journey would lead to a region where the observer will receive

signals which do not emanate from initial data. The aforementioned scenario might be

critical for determinism, which in the language of GR states that given suitable initial

data on a spacelike hypersurface, the Einstein equations should predict, unambiguously,

the evolution of spacetime.

Therefore, we are all faced with a very fundamental problem: the loss of the deter-

ministic nature of the field equations. It is well known that GR admits a well-posed

initial value problem. For some situations though, the maximal development of suitable

initial data can be extended in a highly non-unique way. Consequently, GR is sometimes

unable to predict the global evolution of the spacetime. In such case, the boundary of the

maximal development is called a Cauchy horizon (CH) and marks the division between

the region where GR is able to forecast the evolution and the region where predictability

of the field equations is lost.

BHs such as the (maximal analytic extension of) Reissner-Nordström (RN) and Kerr

solutions are known to have such horizons. For these BHs the inner horizon is a CH that

hides the timelike singularity. In contrast with static BHs, the journey of the infalling

observer beyond the event horizon of charged or rotating BHs seems, at first, eminently

vague. In finite proper time the observer will reach and cross the CH unaffected. Since

the maximal analytic extension of RN and Kerr is not the only possible extension, beyond

this horizon, the observer’s trajectory cannot be determined uniquely.
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Quite surprisingly, nature appears to abhor such a situation and conspires to prevent

the passage beyond the CH. Since realistic BHs form through dynamical gravitational

collapse, it is natural to assume that arbitrarily small time-dependent perturbations will

propagate on the exterior and eventually plunge into the BH. These perturbations can be

thought of as infalling radiation that scatters off the curvature potential of the BH and

gets sucked inside the event horizon. The CH is expected to be unstable under such small

perturbations, yielding a spacetime singularity which effectively seals off the tunnel to re-

gions in which the field equations cease to make sense [23]. The source of this instability is

a blueshift effect which results from infinite proper time compression. Because in asymp-

totically flat spacetimes the causal past of the CH contains the entire Universe external

to the BH, any observer approaching the CH sees an infinite amount of events in a finite

proper time which leads to the blow-up of energy density [24]. Therefore, the instability

turns the CH into a singular boundary and prevents the violation of predictability in

asymptotically flat spacetimes. That this happens generically is the essence of strong cos-

mic censorship (SCC) [25, 26, 27], which states that solutions of the field equations that

arise from proper initial data are future inextendible beyond the CH. Although asymp-

totically flat spacetimes seem to describe well the local structure of spacetime outside a

collapsing star, if one wants to explore the mathematical aspects of GR in astrophysically

appropriate scenarios it is mandatory to include a positive cosmological constant.

The most natural way of describing the accelerated expansion of the Universe is with

a positive cosmological constant. According to the current standard model of cosmology

[28] the value of the cosmological constant Λ is very small (of order 10−52m−2) but

positive. Hence, to appropriately consider our physical Universe an its constituents, we

need to study astrophysical objects immersed in de Sitter (dS) space. Asymptotically

dS BHs are part of a closed Universe where infinity lies beyond a cosmological horizon.

Most intriguingly, the cosmological horizon is a redshift surface where perturbations decay

exponentially fast [29, 30]. This effect might compete and counter-balance the blueshift

effect at the CH and, hence, perturbed charged and/or rotating BHs in dS spacetime

might lead to possible counter-examples of SCC [31, 32, 33, 34].

Many studies have emerged so far concerning the classical stability of CHs in BH-

dS spacetimes. Till this point, the most recent calculations indicated that the CH of

Reissner-Nordström-de Sitter (RNdS) BHs are unstable for the whole subextremal pa-

rameter space of the BH [35]. The aforementioned studies are based on a faulty intuitive

assumption that the exponential decay of perturbations on the exterior of dS BHs was

governed by the minimum between the event and cosmological horizon’s surface gravity
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[36]. More recently, though, it was proven rigorously that the decay of perturbations in

such spacetimes is, in fact, governed by the dominant QNM of the BH exterior [29, 30],

where proper knowledge of these quantities was lacking. Such a fact has re-opened the is-

sue of extendibility of solutions beyond the CH of asymptotically dS BHs and the validity

of SCC.

Currently, the most modest way to tackle such an issue is with BH perturbation theory.

The stability of CHs has proven to be intrinsically connected to how well the spacetime

damps perturbations. In dS BHs with such horizons, a delicate competition between the

damping rate and the blueshift amplification of small perturbations is inevitable [37]. Will

the BH damp perturbations slowly enough leading to the blow-up of energy densities at

the CH, or will it damp them so rapidly than the CH will remain stable enough as to

allow the field equations to determine, in a highly non-unique manner, the evolution of

gravitation and the SCC hypothesis to be violated? In this thesis, we will provide strong

numerical evidence

In this final introductory paragraph, the structure of the thesis is summarized. The

thesis is divided in three parts. On the first part, we introduce the basic background

needed to follow the upcoming research chapters. Topics such as the causal structure of

BHs with CHs, perturbation theory, superradiance and SCC are covered in detail. In

the second part of the thesis, we study the validity of the SCC conjecture in electrically

charged-dS spacetimes at the linearized level. By using state-of-the-art numerical simula-

tions, we probe a fixed RNdS background with neutral, charged and massive scalar fields,

as well as charged fermionic fields. We demonstrate that the linearized analogue of SCC

is violated for near-extremally charged RNdS BHs. We also extend the study of mass-

less neutral scalar perturbations in higher-dimensional RNdS spacetimes and still find

violation of SCC near extremality. In the third and final part of the thesis, a novel sup-

peradiant instability of massive, charged scalar fields scattering off of a higher-dimensional

RNdS BH is discovered and analyzed in detail. The aforementioned material is properly

supported with appendices where we provide rigorous proofs of the CH stability condi-

tion for every configuration of perturbations discussed, we describe the master equations

used to calculate the QNMs of such perturbations in spherically-symmetric spacetimes,

and present a highly detailed analysis of the superradiant instability in RNdS spacetime.

Throughout the thesis we will use geometrized units c = G = 1.





Part I

Black Holes, Quasinormal Modes

and Strong Cosmic Censorship

7
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2

Causal structure of black holes

The description of the global geometry of the large scale distribution of matter in the

Universe, as well as the local geometry of spacetime around a star, like our Sun, is a long-

standing problem. Consider the Einstein-Hilbert action of a 4−dimensional spacetime

with a cosmological constant Λ,

S =

∫
d4x
√
−g
(
R− 2Λ

16π
+ Lm

)
, (2.1)

where g = det(gµν) is the determinant of the metric tensor gµν , R is the Ricci scalar and

Lm is the Lagrangian density representing the contribution of the matter fields minimally

coupled to gravity. Varying (2.1) with respect to the metric tensor yields the Einstein’s

field equations

Gµν + Λgµν = 8πTµν , (2.2)

where Gµν = Rµν − 1
2
gµνR is the Einstein tensor, Rµν is the Ricci tensor and Tµν is

the energy-momentum tensor associated with the matter Lagrangian Lm. Supplementing

(2.2) with the proper equations of motion for the matter fields leads to a complicated

system of non-linear partial differential equations describing the evolution of all fields

including the spacetime metric. Some of the most astrophysically relevant solutions of

(2.2) describe BHs with gravitational mass, electric charge and angular momentum. In

this chapter, we review the causal structure of three exact solutions of Einstein equations;

the Schwarzschild, RN and RNdS spacetimes. These metrics are extensively reported and

utilized throughout this thesis. The following chapter is based on [13, 38, 39].
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2.1 The Schwarzschild solution

The Schwarzschild solution [40] represents, in view of Birkhoff’s theorem, the most general

spherically symmetric vacuum, with Λ = 0. The metric can be given in the form

ds2 = −
(

1− 2M

r

)
dt2 +

(
1− 2M

r

)−1

dr2 + r2(dθ2 + sin2 θdϕ2), (2.3)

where M is the Arnowitt-Deser-Misner (ADM) mass of the body as measured from in-

finity and r > 2M . This spacetime is static and spherically symmetric. The solution is

asymptotically flat as the metric has the form gµν = ηµν +O(1/r) for large r, where ηµν

is the Minkowski metric tensor. It is natural to consider this metric for r > R > 2M as

a solution outside a spherical body, with R its radius, where the metric inside the body

has a different form determined by the energy-momentum tensor of the matter in the

body. However, as a BH solution, it is interesting to see what happens when the metric

is regarded as an empty space solution for all r.

By inspection, (2.3) appears to be singular for r = 0 and r = 2M . A calculation

shows that although this occurs at r = 2M in the Schwarzschild coordinates (t, r, θ, ϕ),

no curvature invariants diverge there. This suggests that the “singularity” at r = 2M

is not a physical, but rather, a coordinate one. To confirm this, we define the tortoise

coordinate

r∗ =

∫
dr

1− 2M
r

= r + 2M log(r − 2M). (2.4)

Then, υ ≡ t+r∗ is the advanced null coordinate (or ingoing Eddington-Finkelstein coordi-

nate) and u ≡ t−r∗ is the retarded null coordinate (or outgoing Eddington-Finkelstein co-

ordinate). Using coordinates (υ, r, θ, ϕ) the metric takes the ingoing Eddington-Finkelstein

form

ds2 = −
(

1− 2M

r

)
dυ2 + 2dυdr + r2(dθ2 + sin2 θdϕ2). (2.5)

The metric (2.5) is non-singular at r = 2M and is analytic on a larger manifold for which

0 < r < ∞. Thus, by using different coordinates we can extend (2.3) so that it is no

longer singular at r = 2M . The same can be achieved by writing (2.3) in the coordinates

(u, r, θ, ϕ), where

ds2 = −
(

1− 2M

r

)
du2 − 2dudr + r2(dθ2 + sin2 θdϕ2). (2.6)
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Figure 2.1: The Penrose-Carter diagram of the maximally extended analytic Schwarzschild

solution. Null lines are at ±45◦. The diagram shows the future and past singularity r = 0,

the spacelike infinity i0, the future and past timelike infinities i+, i−, the future and past

null infinities I+, I− and the future and past event horizon H+, H−, respectively. Σ̃

designates an initial Cauchy hypersurface.

The surface r = 2M is a null surface. As r → 0 the scalar curvature diverges desig-

nating that r = 0 is a curvature singularity. More importantly, beyond r = 0 there are

no continuous extensions of the metric and the field equations cease to make sense there

[41]. This deserves to be called a terminal boundary.

The Penrose-Carter diagram of the maximally extended Schwarzschild spacetime is

shown in Fig. 2.1. There are no timelike or null curves which go from region I to the

parallel region III. All future-directed timelike or null curves which cross the surface

r = 2M (H+) approach the future singularity at r = 0, in region II. Similarly, past-

directed timelike or null curves which cross r = 2M (H−) approach the past singularity

at r = 0, in region IV.

If we consider the future light cone of any point outside of r = 2M , the radial outwards

curve reaches infinity but the inwards one reaches the future singularity; if the point lies

in region II, both these curves hit the singularity and the entire future of the point ends

at the singularity. Therefore, the singularity can be avoided only by observers outside

r = 2M . Thus, the surface r = 2M separates the spacetime in an external region
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where observers can travel to infinity and an internal region where observers are causally

disconnected to infinity. This surface is called the event horizon and its radius is called

the Schwarzschild radius. This spacetime is globally hyperbolic, meaning that it contains

a Cauchy hypersurface Σ̃ such that every inextendible causal curve in the spacetime

manifold intersects Σ̃ exactly once.

2.2 The Reissner-Nordström solution

The RN solution [42, 43, 44, 45] represents the spacetime outside a spherically symmetric

massive body, with Λ = 0, carrying an electric charge. The energy momentum tensor is

that of the electromagnetic field in the spacetime which results from the charge of the

body. It is the only spherically symmetric asymptotically flat solution of the Einstein-

Maxwell equations and is, locally, rather similar to the Schwarzschild solution. The metric

in coordinates (t, r, θ, ϕ) has the form

ds2 = −
(

1− 2M

r
+
Q2

r2

)
dt2 +

(
1− 2M

r
+
Q2

r2

)−1

dr2 + r2(dθ2 + sin2 θdϕ2), (2.7)

where M represents the ADM mass and Q the electric charge of the object. If Q2 > M2

the metric is non-singular everywhere except for the naked singularity at r = 0. We

will not be interested in such parameters. If Q2 < M2, the metric also appears to have

“singularities” at

r± = M ±
√
M2 −Q2, (2.8)

where r+ > r−, while if Q2 = M2 then r+ = r− and we say that the BH is extremal.

Following the logic of the previous section r = r+ can be proven to be the event horizon

of the BH and r = r− a horizon that lies inside the BH. These coordinate singularities

can be removed by introducing suitable coordinates and extending the manifold. Defining

the tortoise coordinate

r∗ =

∫
dr

1− 2M
r

+ Q2

r2

, (2.9)
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Figure 2.2: The Penrose-Carter diagram of the maximally extended analytic Reissner-

Nordström solution for subextremal Q2 < M2 parameters. Null lines are at ±45◦. The

diagrams designate the future and past timelike singularities at r = 0, the spacelike infinity

i0, the future and past lightlike infinities I+, I−, the future and past event horizon r = r+

(H+, H−) and the future and past Cauchy horizon r = r− (CH+, CH−). Σ̃ designates an

initial Cauchy hypersurface for the shaded region.



14 2.2. The Reissner-Nordström solution

then for r > r+

r∗ = r +
r2

+

(r+ − r−)
log(r − r+)−

r2
−

r+ − r
log(r − r−), if Q2 < M2, (2.10)

r∗ = r +M log((r −M)2)− 2

r −M
, if Q2 = M2, (2.11)

r∗ = r +M log(r2 − 2Mr +Q2) +
2

Q2 −M2
arctan

(
r −M
Q2 −M2

)
, if Q2 > M2. (2.12)

By utilizing the advanced and retarded null coordinates υ, u, (2.7) can be written in

(υ, r, θ, ϕ) or (u, r, θ, ϕ) coordinates as in the Schwarzschild case.

The Penrose-Carter diagram of the maximally extended analytic RN metric is shown

in Fig. 2.2. Region I contains an infinite number of asymptotically flat regions where

r > r+. Region I is connected with regions II and III where r− < r < r+ and 0 < r < r−,

respectively. There is still an irremovable singularity at r = 0 in region III, but unlike the

Schwarzschild solution, it is timelike, thus it can be avoided by a timelike curve starting

from region I, which crosses r = r+ (H+) and r = r− (CH+). Such a curve can pass

through regions II, III and II to emerge into another asymptotically flat region I. This

raises the intriguing possibility that one might be able to travel to other Universes by

passing through maximally extended analytic RN BHs.

The timelike character of the singularity also means that given any initial Cauchy

hypersurface Σ̃, one can find past-directed causal curves in region III which do not intersect

Σ̃. For example, the surface Σ̃ crosses two asymptotically flat regions I (see Fig. 2.2).

This is a Cauchy hypersurface for the shaded region. However, in the regions III, to

the future, there are past-directed null causal curves which approach the singularity and

do not cross the surface r = r−, therefore, not intersecting with Σ̃ either. The surface

with radius r = r− is, thus, said to be the future CH for Σ̃, that is, the boundary of

the maximal globally hyperbolic development (MGHD) of initial data on Σ̃. The CH,

therefore separates the spacetime in a region (r− < r < ∞) where events emanate from

initial data on Σ̃ and a region (0 < r < r−) where events do not emanate from initial data

on Σ̃. The continuation of the solution beyond r = r− is, therefore, highly non-unique.

A maximal analytic extension of the RN solution is, of course, one of the many ex-

tensions one can obtain. Although it possesses timelike singularities and tunnels to other

Universes, the Cauchy problem that GR poses states that by choosing appropriate ini-

tial data on Σ̃, the MGHD of the initial data is uniquely determined everywhere in the

shaded region of Fig. 2.2. The question that one should, therefore, ask is if the solutions

are extendible beyond the CH. If an observer could smoothly cross the CH he/she would
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end up in a region where the spacetime is not uniquely determined by the initial data

anymore. Hence, such a scenario will inevitably lead to the failure of the deterministic

nature and the predictability of the field equations.

Although the existence of CHs might lead to the loss of predictability, when observers

cross them, a natural process first proposed by Penrose [23], may turn CHs unstable. One

can consider an observer traveling to future timelike infinity emitting radiation with a

constant frequency into the BH. Since the observer is living forever in the external region

of the BH, he/she will send an infinite amount of radiation into the BH. On the other

hand, a second observer plunging into the BH will reach the CH in finite proper time,

while receiving the radiation from the external observer (see Fig. 2.3). This will lead

to an accumulation of energy as the observer reaches the CH and at the CH the energy

density will eventually blow up. This phenomenon is called the blueshift effect and is

based on infinite proper time compression.

Figure 2.3: An observer traveling to future timelike infinity is emitting an infinite amount

of radiation into a RN BH. At the right CH+, an infinite proper time compression effect

leads to the blow up of energy densities.

Therefore, a hypothetical observer crossing the CH would see the entire history of one

of the external Universes in finite proper time. Objects in this region would then appear

to be infinitely blue-shifted. This suggests that the CH would be unstable against small

perturbations in the initial data on a spacelike surface Σ̃, and that such perturbations

would lead, in general, to singularities on r = r−, where no extensions of the metric are

physically possible [23, 24].
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2.3 The Reissner-Nordström-de Sitter solution

The generalization of the RN solution to include a cosmological constant was first provided

by Carter [46]. The RNdS spacetime is the solution to the Einstein-Maxwell field equations

with Λ > 0 and describes the asymptotically de Sitter spacetime outside an electrically

charged massive body. In the coordinate system (t, r, θ, ϕ) it has the form

ds2 = −
(

1− 2M

r
+
Q2

r2
− Λr2

3

)
dt2+

(
1− 2M

r
+
Q2

r2
− Λr2

3

)−1

dr2+r2(dθ2+sin2 θdϕ2),

(2.13)

where M is the ADM mass of the object, Q the electric charge and Λ the cosmological

constant. The RNdS metric possesses three horizons which satisfy r− < r+ < rc. As in the

previous cases, these are coordinate “singularities” which can be removed by introducing

the tortoise coordinate

r∗ =

∫
dr

1− 2M
r

+ Q2

r2
− Λr2

3

(2.14)

and utilize the standard advanced and retarded null coordinate υ, u. Then, for r > r+

r∗ =
1

2κ0

log(r − r0)− 1

2κ−
log(r − r−) +

1

2κ+

log(r − r+)− 1

2κc
log(rc − r). (2.15)

The constants κi represent the surface gravity at the corresponding ri surface, where

r0 = −(r− + r+ + rc). In the case of static, spherically symmetric solutions, the surface

gravity is defines as [38]

κi =
1

2

∣∣∣df(r)

dr

∣∣∣
r=ri

, i ∈ {0,−,+, c}, (2.16)

where f(r) is the metric function −gtt. The Penrose-Carter diagram of the standard

RNdS metric is shown in Fig. 2.4. We observe that the causal structure shares many

similarities with the RN solution, that is, an event horizon at r = r+ (H±), and a CH at

r = r− (CH±). Interestingly, the existence of a positive cosmological constant gives rise

to a cosmological horizon at r = rc (C±) and a cosmological region rc < r < ∞. In this

region, the spatial coordinates expand with faster-than-the-speed-of-light rates, therefore

any radiation emerging from the cosmological region into the observable Universe is going

to be infinitely red-shifted, hence it will be unobservable. Future infinity is now spacelike.

Although the external region to the BH is a truncation of the whole Universe, an

observer can still “live” forever by traveling to future timelike infinity. Therefore, the CH

might still be an infinite blueshift surface. The difference between asymptotically flat and
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dS spacetimes, however, is that they damp perturbations in a different manner and dS

spacetimes have a finite volume of radiation-emitting observers. As we will discuss in the

next chapters, the ability of asymptotically dS BHs to damp perturbations exponentially

fast might lead to stable enough CHs where the field equations may be satisfied weakly,

and therefore, lead to a potential failure of SCC.

Figure 2.4: The Penrose-Carter diagram of the extended subextremal Reissner-

Nordström-de Sitter solution. Null lines are at ±45◦. The diagram designates the future

and past spacelike infinities I+, I−, the future and past event horizon r = r+ (H+, H−),

the future and past Cauchy horizon r = r− (CH+, CH−) and the future and past cosmo-

logical horizon r = rc (C+, C+). Σ̃ denotes an initial Cauchy hypersurface for the shaded

region. The figure was taken from [47].
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3

Linear perturbations of black holes

QNMs appear naturally in the analysis of linear perturbations on fixed BH backgrounds.

These fluctuations obey linear second-order differential equations, where the geometry

of the background defines the properties of the equations. Usually, symmetries allow

the separation of variables of the solutions to such equations, leading to linear ordinary

differential equations. If the equations obey physically motivated boundary conditions

then their eigenvalues will encode properties of the background. The boundary conditions

are, usually, imposed at the event horizon and spatial infinity (or cosmological horizon

for Λ > 0), but the precise choice depends on the physical problem in study. Usually, we

impose purely ingoing waves at the event horizon and purely outgoing waves at spatial

infinity (or cosmological horizon for Λ > 0).

The methods used to reduce equations to simple ordinary differential equations de-

pend on the choice of the geometry and the symmetries it possesses. In this chapter, we

review the basic method of BH perturbation theory which reduces the coupled non-linear

equation describing the evolution of spacetime and matter into equations of motion of

matter fields propagating in curved backgrounds. We discuss the choice of proper phys-

ically motivated boundary conditions and review all stages of the ringdown waveform.

Finally, we discuss in depth the computational methods used throughout the thesis to

extract QNMs from spherically-symmetric backgrounds. A more rigorous analysis of BH

perturbation theory, QNMs and numerical methods can be found in [16, 17, 18, 19].

3.1 Perturbations of black-hole spacetimes

Consider the Einstein-Hilbert action 2.1. Variations with respect to the metric tensor gµν

yield the Einstein’s field equation (2.2). Supplementing (2.2) with appropriate equations
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of motion for the remaining fields gives a system of non-linear partial differential equa-

tions describing the evolution of all fields including the spacetime metric. A particular

solution of this system forms a set of background fields gBG
µν , ABG

µ , ΦBG, where Aµ is the

electromagnetic potential and Φ the matter field. If we introduce small perturbations in

all fields then we can expand to first order

gµν = gBG
µν + hµν , (3.1)

Aµ = ABG
µ + aµ, (3.2)

Φ = ΦBG + Ψ, (3.3)

where the perturbation hµν , aµ and Ψ are much smaller than the background solutions

of the unperturbed fields. Therefore, by linearizing the full system of equations with

respect to the perturbations, we obtain a set of linear differential equations satisfied by

the perturbations.

Typically one considers solutions of (2.2) which are asymptotically flat, dS or AdS

spacetimes. dS space is the maximally symmetric vacuum solution of Einstein’s field

equations with a positive cosmological constant (Λ > 0) corresponding to a positive

vacuum energy density and negative pressure. dS spacetimes are favorable in cosmology

because they provide a simple model for the accelerated expansion of the Universe. Hence,

BHs in dS spacetime form a very interesting and physically motivated class of solutions

which describe potential cosmological scenarios.

Let us, first, demonstrate the decoupling of equations for scalar field perturbations.

The action for a complex scalar field coupled with electromagnetism is given by

Sm =

∫
d4x
√
−gLm, with Lm = −1

2
gµν (DµΦ)†DνΦ−

1

2
µ2Φ†Φ− 1

4
F µνFµν , (3.4)

where µ is the mass of the scalar field, Fµν = ∇µAν−∇νAµ is the electromagnetic tensor,

Dµ ≡ ∇µ− iqAµ is the covariant derivative associated with the electromagnetic potential

Aµ and the electrostatic coupling constant q and † is the complex conjugation operator.

The equations of motion satisfied by the fields gµν , Aµ and Φ1 are

Gµν + Λgµν = 8πTµν , (3.5)

∇νF
µν = q2Φ†ΦAν − iq

2
(Φ∇νΦ† − Φ†∇νΦ), (3.6)(

DµDµ − µ2
)

Φ = 0, (3.7)

1A similar equation of motion is satisfied by Φ†.
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where the energy-momentum tensor is

Tµν =
1

4

(
(DµΦ)†DνΦ + (DνΦ)†DµΦ

)
− gµν

(
1

4
(DαΦ)†DαΦ +

1

4
µ2Φ†Φ

)
+

1

2
FµαF

α
ν −

1

8
gµνF

αβFαβ, (3.8)

Considering perturbations of the form (3.1)-(3.3) and assuming that the scalar field in-

troduces only a very small perturbation, we can set ΦBG = 0. Consequently, we observe

that the linearized equations of motion for hµν , aµ and Ψ decouple, and thus the metric

and electromagnetic fluctuations hµν , aµ can be consistently set to zero. The background

satisfies

Gµν + Λgµν = 8π

(
1

2
FµαF

α
ν −

1

8
gµνF

αβFαβ

)
, ∇νF

µν = 0, (3.9)

where Gµν , gµν and Fµν depend on gBG
µν , ABG

µ , and the scalar perturbation satisfies the

Klein-Gordon equation (
DµDµ − µ2

)
Ψ = 0, (3.10)

where the operator DµDµ depends on gBG
µν , ABG

µ . Through similar procedures we can

decouple the equations of motion of the spacetime metric and fermionic fields. The

Lagrangian density of a fermionic field Φ coupled with electromagnetism is

Lm =
i

2
gµν
[
Φ†GµDνΦ− (DνΦ)†GµΦ

]
−mfΦ

†Φ− 1

4
F µνFµν , (3.11)

where mf is the mass parameter of the fermion, Gµ are the curved γ−matrices and Dµ
the covariant derivative

Dµ = Dµ + Γµ, (3.12)

with Γµ the spin connection coefficients (see Appendix B). The energy momentum tensor

is

Tµν =
i

4

(
Ψ†Gµ(DνΨ) + Ψ†Gν(DµΨ)− (DµΨ)†GνΨ− (DνΨ)†GµΨ

)
+

1

2
FµαF

α
ν −

1

8
gµνF

αβFαβ. (3.13)

Varying (3.11) with respect to Φ leads to the Dirac equation in curved spacetime2 [49, 50]

(iGµDµ −mf )Φ = 0. (3.14)

2A similar Dirac equation can be obtained by varying with respect to Φ†.
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Using (3.1)-(3.3), we can, again, decouple the system of coupled equations (3.5) to obtain

(iGµDµ −mf )Ψ = 0, (3.15)

where Dµ and Gµ depend on gBG
µν , ABG

µ . A detailed analysis on Eqs. (3.10), (3.15) and how

to transform them into one-dimensional radial Schödinger-like equations can be found in

Appendices A and B.

3.2 Boundary conditions and quasinormal modes

To determine the oscillatory damped modes of a BH, which correspond to the eigenvalues

of (3.10) or (3.15), we first need to recast them into radial ordinary differential equations.

Since we are going to be interested in spherically-symmetric spacetimes we can decompose

Ψ into a radial, an angular and a temporal part as follows:

Ψ =
∑
lm

ψ(r)Ylm(θ, ϕ) e−iωt, (3.16)

where l, m are the angular the magnetic quantum numbers of the spherical harmonic Ylm

and ω is a frequency. Through proper manipulation (see Appendices A and B) we are

usually able to recast many equations of motion (scalar or fermionic) into the following

radial Schrödinger-like form

d2ψ(r)

dr2
∗

+ (ω2 − V )ψ(r) = 0, (3.17)

where ψ(r) is the radial part of the perturbation Ψ, which generally depends on the

coordinates of the spacetime, V is the effective potential and r∗ is the tortoise coordinate.

To determine and impose physically motivated boundary conditions we first examine

the effective potential at the boundaries. For all studies ahead, we will be interested in

asymptotically dS spacetimes which possess cosmological horizons. Therefore, the proper

boundaries lie at the event (r = r+) and cosmological horizon (r = rc) of the spacetime

in study. Thus, when

r → r+, r∗ → −∞, V → 0, (3.18)

hence the asymptotic solution to (3.17) will have the general form Ψ ∼ e−iω(t±r∗). Classi-

cally, anything that lies beyond the event horizon is causally disconnected with infinity,
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so the only accepted solution is purely ingoing waves there:

Ψ ∼ e−iω(t+r∗), r∗ → −∞ (r → r+). (3.19)

Similarly, when

r → rc, r∗ → +∞, V → 0, (3.20)

hence the asymptotic solution will have the general form Ψ ∼ e−iω(t±r∗). Here, the only

accepted wave solution is purely outgoing waves at the cosmological horizon; nothing can

emerge from the cosmological region into the observable Universe , so:

Ψ ∼ e−iω(t−r∗), r∗ → +∞ (r → rc). (3.21)

By imposing the boundary conditions (3.19) and (3.21) in (3.17) we obtain a discrete set

of eigenvalues ω which are called QNMs. The main difference between QNMs and other

physical problems involving small fluctuations, such as a vibrating ideal string, is that the

system in study is now dissipative, thus losing energy. This translates to waves escaping

either at the event or cosmological horizon leading to damped time-dependent oscillations.

The corresponding frequencies ω = ωR + iωI usually have both real and imaginary parts

which correspond to the frequency and damping rate of the mode, respectively. The

modes are labeled with an integer n called the overtone number. The fundamental mode

n = 0 corresponds to the lowest-lying dominant QNM and usually will dominate the

ringdown waveform at late times. Astrophysical BHs are expected to be stable under linear

perturbations, thus the modes must have a negative imaginary part for their amplitude to

decay in time. If modes with positive imaginary parts appear as solutions to the eigenvalue

problem then we say that the spacetime is modally unstable under linear perturbations.

3.3 Quasinormal ringing and late-time tails

After years of analytical and numerical calculations, the physical picture of the behavior

of radiative fields during gravitational collapse has become clear. The picture is similar

for scalar, electromagnetic and gravitational radiation and it holds for non-rotating and

rotating BHs. There are, generically, three distinct stages to the dynamical evolution of

perturbations; initially, an outburst of radiation occurs which carries away energy through

GW emission, later, the perturbation evolves in accordance with damped oscillations
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characteristic of the central BH. This behavior is associated with the QNM frequencies of

the perturbing field, with the real part being linked to the frequency and the imaginary

part to the damping rate of the emitted radiation. This stage has been extensively studied

and is usually called quasinormal ringing. It has been proved that this stage’s evolution

through time does not depend on the initial configuration of the perturbation field.

Figure 3.1: Ringdown waveform of a gravitational Gaussian wave packet Ψ propagating

on a fixed Schwarzschild background. The figures were taken from [51].

For asymptotically flat spacetimes, the quasinormal ringing gives way to the inverse

power-law tail first described in [52, 53, 54]. These investigations were extended to other

BH solutions until the most complete picture to date was provided in a combination of

papers [14, 15, 55, 56]. The behavior of radiation at fixed distances from the BH, at future

null infinity and the event horizon was first described in [14, 15]. Moreover, numerical

simulations of the collapse of a self-gravitating scalar field showed that the inverse power-

law tails are a generic feature of radiative decay, even if a BH does not form. A definitive

proof of boundedness and decay results for the wave equation in Kerr spacetime, without

symmetry assumptions, for the general subextremal case was given in [55, 56]. Thus, if

the radiative field Ψ is observed at fixed radius r and the field is static prior to collapse,

then at t→∞
Ψ ∼ t−(2l+2). (3.22)

In Fig. 3.1, the evolution of a gravitational perturbation on a fixed Schwarzschild back-

ground is presented. From the left panel of Fig. 3.1 it is clear that the gravitational

radiation exhibits damped oscillations until it relaxes. On the right panel, the log-log
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plot reveals the distinct stages described above. The perturbations undergo a long stage

of quasinormal ringing after the initial prompt response of radiation, where the QNMs

dominate. After finite time, the ringing stage is suppressed, giving its turn to the inverse

power-law tail which is depicted with straight lines in log-log scale. It has been argued that

the nature of the tails in asymptotically flat spacetimes is primarily due to the power-law

form of the effective potential as r∗ → ∞ [14, 15] and also due to backscattering off the

background curvature [52, 53]. This is the universal picture of the dynamical evolution

of perturbations in asymptotically flat spacetimes when physically motivated boundary

conditions are imposed.

It is realized, from the above, that the asymptotic structure of spacetime dictates how

the field behaves at late times. This observation begs the question of how the field’s

evolution will be affected if the conditions at infinity are altered. For example, what

would happen when the BH is immersed in an expanding Universe? This question was

first addressed in [36, 57, 58]. The dynamical evolution of a scalar field in Schwarzschild-

de Sitter (SdS) and RNdS spacetime revealed that the field does not decay polynomially,

but rather, exponential at late times. The numerical results in [36] suggested, incorrectly,

that a scalar field Ψ at t→∞ will be compatible with the formula

Ψ ∼ e−lκct, (3.23)

where the decay rate κc is the surface gravity of the cosmological horizon of the BH under

consideration. The erroneous behavior described by (3.23) was derived by the assumption

that the evolution of perturbations on a spacetime with a small cosmological constant is

enough to infer for the whole subextremal parameter space of such spacetimes.

In Chapters 6, 7, 8 and 9 ( based on [59, 60, 61, 62]) we will extensively shown that

Eq. (3.23) is indeed incorrect. In fact, our findings indicate that there are three distinct

families of QNMs in RNdS spacetimes which dominate the ringdown waveform, at late

times, in different regions of the subextremal parameter space. The first one is directly

linked to the photon sphere which dominates for sufficiently large cosmological constants

and the second one’s existence and timescale is related to the accelerated expansion of

the Universe which dominates for small cosmological constants. The final family of modes

appears as the event horizon approaches the CH and dominates the ringdown signal as

the BH charge reaches extremality.

The correct mathematical picture of the exponential decay of perturbations in subex-

tremal asymptotically dS charged and rotating BHs was given recently in [29, 30]. There,
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it was rigorously proven that for some Ψ0 ∈ C,

|Ψ−Ψ0| ≤ Ce−αt, (3.24)

where α is the spectral gap, i.e. the QNM-free strip below the real axis. The spectral gap

is the smallest (in absolute value) non-zero imaginary part of all QNMs, that is

α ≡ infln{−Im(ωln)}, ω 6= 0. (3.25)

Thus, (3.24) describes, in general, the exponential late time behavior of the waveform for

all subextremal parameters of asymptotically dS charged and rotating BH spacetimes.

Eq. (3.24) implies that QNMs always dominate the asymptotic behavior of perturbations

in dS BHs and is completely compatible with our findings.

The presence, and slow decay, of tails at late times in asymptotically flat BHs is a key

ingredient for the instability of CHs inside charged and rotating BHs. In contrast with

the asymptotically flat case, the exponential decay at late times in asymptotically dS BHs

is an indication that the CH might be stable for a finite volume of the parameter space of

charged and rotating BHs immersed in a Universe with a positive cosmological constant.

Therefore, the nature of the late time behavior of perturbations plays a major role on

the study of CH stability. Furthermore, the novel results in [29, 30] indicate that the late

time behavior of perturbations in such spacetimes is governed by the QNMs of the BH

and thus gives us the opportunity to conduct, for the first time, a quantitative analysis

of CH stability at the linearized level by appropriately calculating α numerically.

In Chapters 6, 7, 8 and 9 we will present the outcome of quantitative analyses of CH

stability in RNdS spacetime. These results put directly into question the validity of SCC.

3.4 Computational methods of quasinormal modes

BH perturbation theory is a useful tool to investigate various issues in astrophysics, high-

energy theory and fundamental aspects of gravitation. Several modern applications re-

quire advanced numerical tools to study the linear dynamics of generic small perturbations

propagating on stationary backgrounds. Such analyses are often complementary to non-

linear evolutions and serve as interpreters of dynamic numerical simulations of realistic

scenarios. In this section, we give an overview of the numerical methods which are regu-

larly utilized throughout this thesis to solve the eigenvalue problem in curved spacetime

and extract the QNMs. For a more complete review of the numerical methods in pertur-
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bation theory see [17, 19].

3.4.1 The WKB approximation

One of the most widely used and tested method to calculate QNMs on fixed BH back-

grounds is the Wentzel-Kramers-Brillouin (WKB) approximation. BH QNMs can be

thought of as waves traveling around the BH, and more precisely, some families of QNMs

have been connected with null particles trapped at the unstable circular null geodesic

orbit (the photon sphere) [63]. When the spacetime is perturbed the unstable null par-

ticles leak out from the photon sphere, thus giving out their preferred oscillatory states.

The instability timescale of null geodesics are connected to the decay timescale of QNMs,

while the oscillation frequency is connected with the radius of the photon sphere [64, 63].

The outstanding work of [65] resulted in a derivation closely parallel to the Bohr-

Sommerfeld quantization rule from quantum mechanics. The QNMs are calculated semi-

analytically, using the WKB approximation. Although it is an approximation, this ap-

proach is powerful due to its ability to be carried out in higher orders, to improve the

accuracy and estimate the errors explicitly.

The motivation for using the WKB approximation is the similarity between the equa-

tion of BH perturbation theory and the one-dimensional Schrödinger equation which de-

scribes a particle encountering a potential barrier. In both cases, the master equation has

the form (similar to (3.17))
d2ψ

dx2
+Q(x, ω)ψ = 0. (3.26)

In the BH case, ψ represents the radial part of the perturbation, assumed to have

harmonic time dependence e−iωt and angular dependence Y (θ, ϕ) appropriate to the par-

ticular perturbation and the BH background under study. The coordinate x is called the

tortoise coordinate (also designated as r∗) which ranges from −∞ (at the event horizon)

to +∞ (at spatial infinity or cosmological horizon). The function −Q(x) is constant at

the boundaries and possess a maximum at x = x0. Q(x) depends on the BH parameters,

the angular harmonic indices and the frequency ω.
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Figure 3.2: Plot of the function -Q(x). The figure was taken from [65]

Since Q(x) tends to a constant for |x| → ∞, ψ ∼ e±iωx, where Re(ω) > 0. As

x → +∞, outgoing (ingoing) waves correspond to the negative (positive) sign, and as

x → −∞, outgoing (ingoing) waves correspond to the positive (negative) sign. Here,

“outgoing” means moving away from the potential barrier, so in the BH case, “outgoing

at x → −∞” corresponds to waves falling into the BH event horizon. The search for a

solution of the normal mode problem involves matching two WKB solutions across both

of the turning points x1, x2, simultaneously. Outside the turning points (regions I and III

in Fig. 3.2), the WKB solutions are given by [66, 67]

ψI(x) ≈ Q−1/4e
±i
∫ x
x2

√
Q(t)dt

, (3.27)

ψIII(x) ≈ Q−1/4e±i
∫ x1
x

√
Q(t)dt. (3.28)

In region II we approximate Q(x) by a parabola. This is justified provided that the

turning points x1, x2 are closely spaced. Then Q(x) has the form

Q(x) = Q0 +
1

2
Q′′0(x− x0)2 +O(x− x0)3, (3.29)

where Q0 = Q(x0) < 0, and Q′′0 ≡ d2Q/dx2|x0 > 0. Using

k ≡ 1

2
Q′′0, t ≡ (4k)1/4eiπ/4(x− x0), n+

1

2
≡ − iQ0√

2Q′′0
, (3.30)

brings (3.26) to the appropriate form

d2ψ

dt2
+

(
n+

1

2
− 1

4
t2
)
ψ = 0, (3.31)
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whose solutions are parabolic cylinder functions Dn(t) [66, 67], with the general solution

given by

ψ = ADn(t) +BD−n−1(it). (3.32)

For large |t| the asymptotic forms of (3.32) yield [66, 67]

ψ ≈ Be−3iπ(n+1)/4(4k)−(n+1)/4(x− x0)−(n+1)ei
√
k(x−x0)2/2

+

[
A+

B
√

2πe−inπ/2

Γ(n+ 1)

]
eiπn/4(4k)n/4(x− x0)ne−i

√
k(x−x0)2/2, (3.33)

for x� x2 and

ψ ≈ Ae−3iπn/4(4k)n/4(x0 − x)ne−i
√
k(x−x0)2/2

+

[
B − iA

√
2πe−inπ/2

Γ(−n)

]
eiπ(n+1)/4(4k)−(n+1)/4(x0 − x)−(n+1)ei

√
k(x−x0)2/2, (3.34)

for x � x1, where Γ(n) is the gamma function. It is straightforward to show that the

e−i
√
k(x−x0)2/2 factors of both solutions match the “outgoing” waves of the WKB solutions

(3.27) and (3.28). By demanding only “outgoing” waves, the coefficients of ei
√
k(x−x0)2/2

factors must vanish. This is achieved if B = 0 and Γ(−n) = ∞. The latter conditions

implies that n must be an integer. This leads to the simple condition for the QNMs

Q0√
2Q′′0

= i

(
n+

1

2

)
, n = 0, 1, 2, . . . . (3.35)

Since Q is frequency dependent, this condition leads to discrete complex values for the QN

frequencies. This result is completely general and can be applied to any one-dimensional

potential barrier problem.

Eq. (3.35) was first utilized in [68, 69, 70, 71] where a third-order WKB expansion was

introduced and tested for Schwarzschild, RN and Kerr geometries. In [72], the expansion

was extended to sixth order. Although there is no proof of convergence, results improve

for higher order WKB approximations. The WKB approximation works best for low

overtone numbers n and in the eikonal limit l →∞ (which corresponds to large ωR/ωI).

The method assumes that the potential has a single extremum, which is the case for many

BH effective potentials.
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3.4.2 A matrix method for eigenvalue problems

There are plenty of numerical computation techniques to solve eigenvalue problems of

differential equations. Some of the most powerful computational schemes arise by trans-

forming the Schrödinger-like equation into a matrix equation. The basis of these methods

is the proper manipulation of the ordinary differential equation that governs perturba-

tion propagation through proper decomposition of the spatial derivatives. The equation

is discretized and transformed into a matrix equation which can be recast in terms of

eigenvalues and eigenvectors. One of the methods utilized in this thesis is based on a non

grid-based interpolation scheme, used in [73].

This method makes use of data points in a small region of a query point to estimate its

derivatives by employing a Taylor expansion. The data points can be scattered, therefore

they do not sit on a specified grid. A key step of the method is to discretize the unknown

eigenfunction in order to transform the differential equation and its boundary conditions

into a homogeneous matrix equation. Based on the information about N scattered data

points, Taylor series are carried out for the unknown eigenfunction up to N−th order

for each data point. The resulting homogeneous system of linear algebraic equations is

solved for the eigenvalues. A huge advantage of this method is that the discretization of

the wave function and its derivatives are made to be independent of any specific metric

through well-motivated coordinate transformations.

The Taylor series for a univariate function f(x) around a query point x0 is expressed

as:

f(x) = f(x0) + (x− x0)f ′(x0) +
1

2!
(x− x0)2f ′′(x0) +

1

3!
(x− x0)3f ′′′(x0) + . . . (3.36)

Since the goal is to carry out an interpolation based on the information of a set of N

scattered points distributed in a small vicinity, we apply (3.36) N times to each one of

the data points around x0. The result is written into a matrix form as

F =MD, (3.37)

where F and D are N × 1 column vectors and M is a N × N matrix. F contains the

value of f(x) at each of the N data points, D contains values of the function f(x) and its

derivatives at the query point x0 and the i−th row of the matrixM consists of increasing

power functions of the coordinate relative difference between the i−th data point and the

query point x0. For instance, for a univariate function f(x) with data points the function
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values at coordinates xi, where i = 1, 2, . . . , N, F , D and M can be written as

F = (f(x1), f(x2), f(x3), f(x4), . . . , f(xN))T (3.38)

M =



1 x1 − x0
(x1−x0)2

2
(x1−x0)3

3!
(x1−x0)4

4!
. . . (x1−x0)N

N !

1 x2 − x0
(x2−x0)2

2
(x2−x0)3

3!
(x2−x0)4

4!
. . . (x2−x0)N

N !

1 x3 − x0
(x3−x0)2

2
(x3−x0)3

3!
(x3−x0)4

4!
. . . (x3−x0)N

N !

1 x4 − x0
(x4−x0)2

2
(x4−x0)3

3!
(x4−x0)4

4!
. . . (x4−x0)N

N !

. . . . . . . . . . . . . . .
. . .

...

1 xN − x0
(xN−x0)2

2
(xN−x0)3

3!
(xN−x0)4

4!
. . . (xN−x0)N

N !


(3.39)

D =
(
f(x0), f ′(x0), f ′′(x0), f ′′′(x0), . . . , f (N)(x0)

)T
(3.40)

This implies that the column vector D can be expressed in terms of F and M, once M
has a nonzero determinant, D =M−1F . In particular, if we are only interested in specific

elements of D, we can use Cramer’s rule to evaluate them as follows

Di =
det(Mi)

det(M)
, (3.41)

whereMi is the matrix formed by replacing the i−th column ofM by the column vector

F . For instance, f ′′(x0) = det(M3)/det(M). To rewrite an n−th order derivative f (n)(x),

we write the respective derivate as in (3.41) by using each data point of the small vicinity

as query points. This way, we are able to rewrite all the derivatives at the above N points

as linear combinations of the function values f(xi). Substituting the derivatives into the

eigenequation in study, we obtain N equations with f(x1), . . . , f(xN) as its variables.

The corresponding BH radial master equation of the form (3.17) depends on the tor-

toise coordinate r∗ ∈ (−∞,+∞). To study the QNMs in this region we perform a proper

coordinate transformation (depending on the BH spacetime) to recast the radial domain

to x ∈ [0, 1], where x depends on the coordinate transformation. After properly ap-

plying the boundary conditions by multiplying with the correct asymptotic behavior of

the solutions of the master equation (3.17), we end up with a homogeneous differential

equation

a(x)φ′′(x) + b(x)φ′(x) + c(x)φ(x) = 0, (3.42)

where a(x), b(x), c(x) are ω−dependent functions and φ(x) a general radial function. By

discretizing the interval x ∈ [0, 1] we introduce N randomly distributed points with x1 = 0
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and xN = 1. By utilizing (3.41) we discretize all derivatives and rewrite (3.42) in the

matrix form

MF = 0, (3.43)

where M is a square matrix that depends on the eigenvalues of the system in study and

F = (f1, f2, . . . , fi, . . . , fN)T with fi = φ(xi). As a homogeneous matrix equation, for it

to have non-trivial solutions, the following equation must hold

det(M ) = 0. (3.44)

Eq. (3.44) is the desired algebraic equation to calculate the eigenvalues of any particular

eigenvalue system, which can be solved numerically using Mathematica or Matlab.

The aforementioned method has been benchmarked in [73, 74, 75] and the results were

compared with the sixth-order WKB approximation [68], the continued fraction method

[76, 77] and the Horowitz-Hubeny method [78] achieving great accuracy and precision.

3.4.3 A pseudospectral collocation method

To be able to justify that our numerical calculations are valid we need to utilize multiple

methods. The Mathematica package QNMSpectral developed in [79] is a spectral method

utilized frequently in this thesis. The package is based on numerical methods first intro-

duced in [80]. This method essentially discretizes the master equation using pseudospec-

tral collocation methods and then directly solves the resulting generalized eigenvalue

equation.

The choice of boundary conditions defines the asymptotics of our setup which we in-

corporate to the master equations by hand. This step normalizes the solutions so they

behave smoothly at the boundaries. Having derived the master equation in a form with no

divergences at the boundaries, the code discretizes the equation we input with pseudospec-

tral methods (see [81] for a complete review of these methods) by replacing continuous

variables by a discrete set of collocation points on a grid. A function can then be repre-

sented as the values the function takes when evaluated on the gridpoints. A useful way of

viewing this set of numbers representing a particular function is as coefficients of the La-

grange interpolation polynomials. The Lagrange interpolation polynomials corresponding

to the grid xi, where i = 0, . . . , N are polynomials Cj(x) of degree N , with j = 0, . . . , N

satisfying Cj(xi) = δij. The choice of a grid uniquely determines the Lagrange polynomial
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as

Cj(x) =
N∏

j=0,j 6=i

x− xj
xi − xj

. (3.45)

A function f(x) is then approximated by the Lagrange polynomials as

f(x) ≈
N∑
j=0

f(xj)Cj(xi). (3.46)

The expansion in terms of Lagrange interpolation polynomials allows one to construct

the first derivative matrix D
(1)
ij = C ′i(xj), and work similarly for higher order derivatives.

Solving the resulting discretized master equation will lead to a function f(x) which solves

the master equation exactly at the collocation points. As the number of gridpoints is

increased, it is expected that the function will also solve the equation at other points.

Numerical test indicate that the code is more efficient when one chooses the Chebyshev

grid:

xi = cos

(
iπ

N

)
, i = 0, . . . , N. (3.47)

For this grid, it can be proven that any analytic function can be approximated with

exponential convergence in N . These points, as given in (3.47), lie in [−1, 1] but with a

proper transformation this can be rescaled to the domain of interest [0, 1]. For this grid,

the Lagrange polynomials are linear combination of the Chebyshev polynomials Tn(x)

Cj(x) =
2

Npj

N∑
m=0

1

pm
Tm(xj)Tm(x), p0 = pN = 2, pj = 1. (3.48)

These functions are perfectly smooth and at the endpoints they are either 0 or 1.

Applying the above discretization technique, the code turns the problem of solving a

linear ordinary differential equation, subject to specific boundary conditions, into solving

a matrix equation, where the boundary conditions are already implicitly incorporated.

The code then writes the matrix equation into a generalized eigenvalue problem. The

simplest type of master equation will be of the form

c0(x, ω)φ(x) + c1(x, ω)φ′(x) + c2(x, ω)φ′′(x) = 0, (3.49)

where each of the ci are linear in ω: ci(x, ω) = ci,0(x) + ωci,1(x). Each of the coefficients

ci,j(x) is turned into a vector by evaluating it on the gridpoints. These vectors are mul-

tiplied with the corresponding derivative matrices D
(n)
ij and the resulting matrices are
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added, to bring the equation into the form

(M0 + ωM1)φ = 0, (3.50)

where the Mi are now purely numerical matrices, independent of ω. Explicitly, (M0)ij =

c0,0(xi)δij + c1,0(xi)D
(1)
ij + c2,0(xi)D

(2)
ij and similarly for M1. Eq. (3.50) describes a gen-

eralized eigenvalue problem. The code implements the built-in function Eigenvalues or

Eigensystem and returns the QNMs and its associated eigenfunctions upon request.

The aforementioned method has been benchmarked in [79] achieving high accuracy

and precision. Various tests with the sixth-order WKB approximation [68], the continued

fraction method [76, 77] and the matrix method [73] have been employed, reaching high-

precision agreement.
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4

Superradiance: an overview

Perturbing a BH with small fields could lead in two possible outcomes; the BH is stable

under perturbations due to damping mechanisms that act on the BH exterior and will relax

after the initial disruption or the BH is unstable under perturbations and will inevitably

disappear or turn into another stable object. Although astrophysical BHs are expected to

be stable under small fluctuations, a lot of studies have been performed to BH solutions

that might be prone to instabilities due to new phenomena that might be possibly unveiled.

Quite strikingly, one can extract energy from BHs [21, 22] by scattering test field off the BH

horizon. This mechanism is called superradiance and it is mostly known for rotating and

charged BHs. During this process, the test field grows on the expense of the BH electric or

rotational energy, leading to instabilities and spontaneous symmetry breaking phenomena

which give rise to hairy BH solutions, that is, BHs with non-vanishing order parameters

which would be absent before the symmetry breaking occurred. In this chapter, we take a

closer look to the mechanism that leads to superradiance in BH spacetimes. This chapter

is based on [20].

4.1 Scalar field scattering off a potential barrier

The first indication of superradiant amplification of scattered waves off electrostatic po-

tentials originates from the early work of Klein who pioneered the study of the Dirac

equation including a step potential [82]. Consequent studies performed by Hund [83], but

now dealing with the wave equation of a charged scalar field, illustrated that the potential

barrier can give rise to the production of charged particle pairs when the potential is suf-

ficiently strong. In this section, we present a simplistic treatment of scalar field scattering

to demonstrate the phenomenon of superradiance.
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Lets consider a massive scalar field Ψ minimally coupled to an electromagnetic poten-

tial Aν in (1 + 1)-dimensions. The equation of motion of the scalar field will be governed

by (
DνDν − µ2

)
Ψ = 0, (4.1)

where Dν ≡ ∂ν − iqAν the covariant derivative, q and µ the charge and mass of the scalar

field, respectively, and Aν = (A0(x), 0), with asymptotic behavior

A0(x)→

0, for x→ −∞

V, for x→ +∞
(4.2)

If we decompose the scalar field as Ψ = e−iωtψ(x), then (4.1) becomes (following the

procedure demonstrated in Appendix A)

d2ψ(x)

dx2
+
[
(ω − qA0)2 − µ2

]
ψ(x) = 0. (4.3)

If we consider an incident beam of bosons coming from −∞ with amplitude I, scattering

off the potential with reflection and transmission coefficients R and T , respectively, then

the asymptotic behavior of the solution of (4.3) will be

ψ(x)→

Ieik−∞x +Re−ik−∞x, as x→ −∞

T eik∞x, as x→ +∞
(4.4)

where k−∞ =
√
ω2 − µ2, k∞ =

√
(ω − qV )2 − µ2 and ω > 0. The reflection and trans-

mission coefficients depend on the shape of the potential A0, however the Wronskian

W = ψ∂xψ
† − ψ†∂xψ (4.5)

of two independent solutions of (4.3) is conserved, where ψ† the complex conjugate spatial

part of the solution of (
(DνDν)

† − µ2
)

Ψ† = 0. (4.6)

Evaluating the Wronskian, or equivalently, the particle current density, for ψ and ψ† at

the asymptotic regions we get

W (x→ −∞) = 2i
√
ω2 − µ2(|I|2 − |R|2), (4.7)

W (x→ +∞) = 2i
√

(ω − qV )2 − µ2|T |2. (4.8)
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Since the Wronskian is conserved, we find

|R|2 = |I|2 −
√

(ω − qV )2 − µ2√
ω2 − µ2

|T |2. (4.9)

Considering a beam of massless particles, (4.9) simplifies to

|R|2 = |I|2 − ω − qV
ω
|T |2. (4.10)

Therefore, if

0 < ω < qV (4.11)

then the beam of bosons will be superradiantly amplified, since |R| > |I|. It is noteworthy

to point out that (4.11) generalizes to massive case as

µ < ω < qV − µ, (4.12)

provided that qV > 2µ.

Eq. (4.3) shares a striking resemblance with the master equation of scalar waves propa-

gating on a fixed BH background, and therefore we expect that a similar phenomenon will

occur in charged BH spacetimes when charged scalar waves scatter off the BH curvature

potential.

4.2 Black-hole scattering and superradiance

Lets consider an asymptotically flat and spherically symmetric spacetime. As we have

already seen, the propagation of various type of perturbations on fixed backgrounds obeys

a Schrödinger-like equation of the form (3.17), with an effective potential which encodes

the curvature of the BH background and the properties of the matter fields. Given the

symmetries of the background, we consider a scattering experiment of a monochromatic

wave with frequency ω with time dependence e−iωt. The potential will possibly vanish at

the boundaries (or is a constant). For this reason, we will assume the potentials constancy

at the boundaries. Then, (3.17) will have the following asymptotic behavior

ψ ∼

 T e−ik+r∗ +Oeik+r∗ , r → r+

Reik∞r∗ + Ie−ik∞r∗ , r →∞,
(4.13)
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where k2
+ = ω2 − V (r → r+) and k2

∞ = ω2 − V (r → ∞). The previous boundary

conditions correspond to an incident wave of amplitude I from spatial infinity giving rise

to a reflected wave of amplitude R and a transmitted wave of amplitude T at the event

horizon. Due to the presence of the event horizon O ≡ 0, meaning that nothing escapes

from the BH.

If we assume that V is real, which actually holds for scalar perturbations in rotating

and charged BHs, then since the background is stationary, Einstein’s equations are in-

variant under the t → −t, ω → −ω transformations. Hence, another complex conjugate

solutions of (3.17) exists, ψ†, which satisfies the complex conjugate boundary conditions.

Solutions ψ, ψ† are linearly independent and therefore, ordinary differential equation

theory implies that the Wronskian W should be r∗−independent. Thus, the Wronskians

evaluated near the event horizonW+ = −2ik+(|T |2) and infinityW∞ = −2ik∞(|R|2−|I|2)

must be equal, leading to

|R|2 = |I|2 − k+

k∞
|T |2. (4.14)

It is evident from (4.14) that when k+/k∞ > 0, then |R|2 < |I|2 which means that the

reflected wave amplitude is smaller than the incident pulse’s amplitude. This is expected

from scattering experiments off perfect absorbers. However, if k+/k∞ < 0, the reflected

wave is superradiantly amplified, |R|2 > |I|2.

At this point, we state that dissipation is highly crucial for superradiance to occur.

The purely absorbing ability of the event horizon is the driving force of the effect, since

in absence of dissipation, energy conservation would imply that the outgoing flux would

be equal to the transmitted one, and therefore |R|2 = |I|2.

The phenomenon of superradiant scattering seems to imply that energy is being ex-

tracted from the BH. Considering back-reaction effects, energy is indeed extracted from

the BH which leads to the decrease of mass and angular momentum from rotating BHs

and the decrease of mass and charge from charged BHs [21, 22]. Such a decrease in BH

energy leads to the increment of the energy of the test field, and possibly the rise of

instabilities. The endpoints of such instabilities might lead to the evacuation of matter

from the BH or to the formation of a novel constant observable configuration around the

BH. This phenomenon is called spontaneous scalarization, if the test field is a scalar, and

designates the violation of the no-hair theorem, which states that BHs can be completely

characterized by three classical externally observable quantities; the mass, charge and

angular momentum.
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4.3 Concluding remarks

So far, an interesting study have suggested that higher-dimensional RNdS spacetimes are

prone to instabilities under gravitational perturbations [84]. Specifically, d−dimensional

RNdS BHs with d > 6 and large enough mass and charge, are gravitationally unstable.

Such an instability has been further examined in [85, 86, 87]. Why only d = 4, 5 and

6-dimensional RNdS BHs are favorable to be stable, is still unknown. Due to the consid-

eration of a BH charge in such spacetimes, though, one could argue that for them to form

through gravitational collapse, charged matter should be present.

More recently, a new instability was found in 4−dimensional RNdS BHs in [88] and

further analyzed in [89]. The l = 0 charged scalar perturbation was proven to be unstable

for various regions of the parameter space of RNdS BHs. The addition of an arbitrarily

small amount of mass acts as a stabilization factor, as well as the increment of the scalar

field charge beyond a critical value. It has been proven that this instability has a superra-

diant nature; the charged field is trapped in the potential well between the photon sphere

and the cosmological horizon and is able to extract electric energy from the BH.

In Chapter 10 (based on [90]), we extend the study of the dynamical instability emerg-

ing from a spherically symmetric charged scalar perturbation scattering off RNdS curva-

ture potential in higher-dimensions. Since the spacetime dimensions directly affect the

effective potential of the BH, it is interesting to examine if their increment prevents the

instability to occur or enhances it.

We will perform a thorough frequency-domain analysis of higher-dimensional RNdS

BHs under charged scalar perturbations and conclude that the source of instability is

directly linked with the existence of the cosmological horizon, as well as the QNMs of

pure d−dimensional de Sitter space. Such modes satisfy the superradiant condition even

when stable configurations occur. We show that the increment of dimensions, amplifies

the instability leading to larger regions in the subextremal parameter space of RNdS

where superradiant instabilities occurs. Interestingly, even though the introduction of

mass stabilizes the system, there are still regions in the parameter space where the family

remains unstable and superradiant.

An open, and still interesting, problem is the nonlinear development of such a system to

grasp the end-state of the evolving BH spacetime. A huge challenge in such nonlinear evo-

lutions is the very large timescale of the instability which requires highly precise numerical

developments. Since the increment of dimensions reduces the timescale of the instability,

it would be more feasible for such an instability to be tested in higher-dimensional RNdS

non-linearly and realize if it leads to a novel scalarized BH.
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5

Black-hole interiors and Strong

Cosmic Censorship

For many decades, SCC has been one of the most intriguing problem in GR. SCC addresses

the issue of the nature of singularities as well as the predictability of Einstein’s field

equations. It states that given suitable initial data on a spacelike hypersurface, the laws of

GR should determine, completely and uniquely, the future evolution of the spacetime. In

this chapter, we review the history and the current state-of-the-art of the SCC conjecture

and discuss its modern formulation. This chapter is based on [27, 91, 92].

5.1 Introduction

One of the most fundamental questions concerning the study of black holes and their

internal structure is “what is the anatomy of the interior of a BH?”. A lot of progress

has been made during the last decades on answering such an inquiry. Many spacetimes

have been studied to grasp the nature of singularities lying deep inside charged and

rotating BHs. Their structure is crucial in answering elementary questions about the

global uniqueness of solutions in BH interiors, following the laws of GR, given suitable

initial data placed in the external BH region. In this thesis, we will try to answer this

question by following purely classical laws.

The Cauchy initial value problem that GR poses guarantees the existence of a unique,

up to isometries, MGHD, given suitable initial data on a spacelike Cauchy hypersurface.

If we denote this surface as Σ̃ then its future MGHD coincides with the shaded region in

Fig. 5.1. Therefore, any complete past-directed causal curve in this region intersects Σ̃

exactly once. The inquiry we are trying to answer then is whether the shaded region is
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extendible, in a meaningful way, to a larger spacetime manifoldM. If so, the boundary of

the MGHD is the CH, CH+. As we saw in Chapter 2, CHs do exist in BH spacetimes and

in fact might pose a threat to the predictability of physical laws. The question posed by

SCC is then if stable CHs exist at all in BH spacetimes. Of course, equivalent arguments

hold for the past MGHD and the past CH, CH−, which is not shown in Fig. 5.1.

Figure 5.1: The maximal globally hyperbolic development of initial data on a Cauchy

hypersurface Σ̃. For simplicity, only the future development and Cauchy horizons CH+

are shown.

5.2 Cauchy horizons in asymptotically flat black holes

The first quantitative study of CH stability dates back to the early 70s when Penrose

and Simpson [23] first considered the possibility of observers crossing the CH that lies

inside charged BHs. They investigated the effect of small asymmetries that emerge from

dynamical gravitational collapse on the stability of CHs in RN BHs. By considering a

test electromagnetic field on a fixed RN background, they found that instabilities on the

probe field arise at the CH, though not at the event horizon. This led to the reasonable

conclusion that in the full coupled Einstein-Maxwell theory, the inner horizon will not

survive as a non-singular hypersurface when perturbations are present, but will instead

become a curvature singularity.

A decade later Chandrasekhar and Hartle [24] investigated the behavior on the CH

of a flux of gravitational and electromagnetic radiation crossing the event horizon of a

RN BH. They showed that the flux of null radiation received by an observer crossing the
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CH, along a radial timelike geodesic, diverges exponentially for some physically reason-

able perturbations, thus leading to a blueshift effect. More precisely, physical quantities

associated with the perturbations, such as the energy density measured by free-falling

observers, diverge at the CH. Put differently, CHs of RN spacetimes are unstable under

small time-dependent perturbations (see also [93, 94, 95, 96]). It has been shown that

the same is true for Kerr-Newman spacetimes [97]. This is a clear indication that CHs of

asymptotically flat spacetimes should not be smoothly accessible to free-falling observers.

Although linear studies have been proven very insightful, the concept of SCC requires

a deeper understanding with models that are able to explore the possible back-reaction

effect of the diverging perturbations at the CH. This question was tackled by Israel and

Poisson [98]. To simplify their analysis, they modeled the infinitely blue-shifted radiation

by an ingoing spherically symmetric stream of massless particles, thus converting the RN

geometry in study into the charged Vaidya solution [99]. In this solution, the CH is a

weak curvature singularity, since the metric function approach a regular limit on the CH,

for appropriately chosen coordinates. In addition, none of the curvature invariants were

divergent there.

However, they showed that the situation drastically changes if one considers, in addi-

tion, a flux of outgoing massless particles, that models a piece of the ingoing field that

has been backscattered by the BHs curvature. Although there is no explicit geometry

for such a case, they showed that the internal mass function (or Hawking mass) blows

up at the CH. This mass divergence was exponential in outgoing null coordinates and

therefore they called it mass inflation singularity. The divergence of the mass function

guarantees that the Kretschmann scalar blows up at the CH. However, this is not what

characterizes the strength of this singularity because curvature, per se, does not imply

the breakdown of the field equations [100] nor the destruction of macroscopic observers

[101]. What makes the mass-inflation phenomenon so relevant is that it is related to the

Christodoulou criteria, that we will discuss later, which guarantees the breakdown of field

equations [27, 34].

Mass inflation was further studied in spherical symmetric null dust models [102, 103],

while the evidence in rotating BHs, although less firm, is still quite convincing [104, 105,

106]. The aforementioned studies share a common factor; they use null dust models to

examine the infinite blueshift effect at the CH. Unfortunately, this forces one to input

backscattering of the null streams by hand. Moreover, backscattering only occurs strictly

after horizon formation and the rate of decay of radiation before this artificial backscat-

tering occur is also put in by hand. It is clear that a more realistic scenario would be



44 5.2. Cauchy horizons in asymptotically flat black holes

necessary. A natural candidate is the Einstein-Maxwell-scalar field model. Here, the

field equations are coupled to the Maxwell and wave equations, but the scalar field is un-

charged, thus the latter two interact only through the gravitational coupling. The above

model admits true wave-like behavior and allows for the decay rate of radiation on the

horizon to arise dynamically. It is a generalization of the spherically symmetric Einstein-

scalar field model whose mathematical study was initiated by Christodoulou leading to

his seminal proofs of both weak and strong cosmic censorship [26].

On a more mathematical point of view, SCC initially stated that generic initial data

should be future inextendible as a Lorentzian manifold with continuous metric. The

instability at the CH, due to the blueshift effect of scattered radiation, should then lead

to a singularity when non-linearities kick in. By taking a closer look at solutions of

the wave equation, instead of null dust models, on RN or Kerr we realize that they

decay polynomially outside the BH and this might compete with the blueshift effect.

However, Dafermos proved that the energy measured by a local observer at the CH,

which is proportional to the gradient of the wave equation solution, is indeed infinite

[107]. The blow-up, however, is in a sense weak because the amplitude of the solutions

remain bounded at the CH [108]. In fact, the solutions of the wave equation in subextremal

RN spacetime are globally bounded in the BH interior up to and including the CH, to

which the solutions extend continuously but the energy is infinite. The same holds for

subextremal Kerr BHs [56, 109, 110, 111]. For results concerning extremal RN BHs see

[112, 113].

If one then naively extrapolates the linear behavior of the wave equation to the non-

linear behavior of the field equations [27, 109, 110, 114], one can identify that the metric

may extend continuously to the CH whereas the Christoffel symbols (gradients of the met-

ric) blow up. Therefore, a more proper formulation of SCC, proposed by Christodoulou

[115], is the following: the MGHD of generic initial data should be future inextendible as

a spacetime with square-integrable Christoffel symbols. This statement is not at the level

of blow up of the curvature, but rather at the non-square integrability of the Christoffel

symbols and essentially forbids the Einstein equations from making sense at the CH even

in a weak manner. This notion is perhaps less familiar than the traditional classifications

of singularity [116, 117], but more relevant to the partial differential equations properties

governing the dynamics of the Einstein equations, for which the pointwise blow-up of

curvature per se is of no particular importance [100].

Many theorems support the claim that the naive extrapolation of linear theory is

indeed correct [107, 109, 110]; the blueshift instability is not sufficiently strong to destroy
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the spacetime earlier into a spacelike singularity, but does give rise to a null singularity

at the CH across which the metric extends continuously but the mass function diverges.

Therefore, although the initial SCC conjecture seems to fail, the modern formulation by

Christodoulou may still be true in subextremal asymptotically flat spacetimes.

From the former, we conclude that there exists strong evidence that the existence of

CHs in charged and rotating asymptotically flat BHs do not pose a threat in classical

GR, since slight deviations in the initial conditions produce spacetimes with drastically

different causal structures. Taking the deviations into account, they destroy the CH

and replace it with a singularity, beyond which the field equations cease to make sense.

Therefore, we may conclude that perturbed Kerr-Newman spacetimes do not represent a

counter-example to the modern formulation of SCC.

5.3 Cauchy horizons in asymptotically de Sitter black

holes

Although it appears that SCC holds true for BHs in asymptotically flat spacetimes, the

same cannot be stated for BHs in asymptotically dS spacetimes. Charged or rotating BHs

in dS, like the RNdS or KdS space, also exhibit a CH. The major difference between the

dS class of spacetimes and asymptotically flat ones is that earlier studies have indicated

both stability and instability of the CH under small perturbations. Therefore, there is still

no definite decision on the matter. A crucial ingredient for such studies is the existence

of a cosmological horizon in the causal structure which forces the perturbations to decay

exponentially in the exterior rather than polynomially. This effect can now compete with

the exponential blueshift at the CH and possibly counterbalance it.

The first investigative study of CH stability in BH-dS spacetimes was performed by

Mellor and Moss in 1990 [57]. Confining their attention to spherically symmetric RNdS

spacetime, they considered the effect of gravitational perturbations on the CH. They

examined the flux of radiation due to these perturbations, as seen by an infalling observer

that crosses the CH, and concluded that it remains finite. Unfortunately, a very strict

assumption (vanishing flux of radiation at the cosmological horizon) in their analysis was

recognized later which led Brady and Poisson to revisit the problem [118]. Brady and

Poisson’s model mimics the perturbations propagating from the exterior to the interior of

the BH as a spherical inflow of null dust. The requirement of a finite flux of energy at the

cosmological horizon led to a significantly different stability condition, namely the CH is

stable provided that the surface gravity at the CH is less than that of the cosmological
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horizon. This was the first indication that near-extremally charged RNdS BHs might

violate SCC, at least in null dust models. However, if one includes backreaction, when

the CH was stable, a divergent flux was still present there but the mass function would

be bounded [119]. The generalization of the stability analysis by Mellor and Moss to the

case of rotating BHs in dS was performed by Chambers and Moss [120]. By studying

linear perturbations of scalar, electromagnetic and gravitational fields on KdS spacetime

they found that the CH is stable, provided that the surface gravity at the CH is larger

than the one of the cosmological horizon.

While we are primarily concerned with the classical stability of the CH in dS BHs,

it is of interest to review the first quantum analysis. It is natural to ask whether a CH

is quantum mechanically stable, when classical indications point to that direction. The

intriguing partial answer to this question was provided by Markovic and Poisson in 1995

[121]. By examining the quantum fluxes measured by an observer approaching the CH of a

RNdS BH they were able to conclude that the horizon is quantum-mechanically unstable,

except for the case where the surface gravity at the CH equals the one of the cosmological

horizon. This is a much more strict demand, meaning that when quantum backreaction

is considered, the regularity requirements at the CH are higher as to assure a safe passage

beyond it. It is important to note that since the calculation of the quantum energy-

momentum tensor < Tµν > in 4 dimensions is extremely difficult, they considered, instead,

a simpler, but still instructive, approach to the problem, by quantizing a conformally

invariant scalar field on a 2-dimensional version of the RNdS spacetime. This made the

calculation much easier.

Going back to classical results, Brady, Moss and Myers revisited SCC in RNdS space-

times [35], but this time they took into account the backscattering of ingoing modes which

led to an extra contribution to the influx along the CH arising from the condition that

observers should measure a finite flux of radiation at the event horizon. This additional

flux ensured that the CH is, in general, unstable. The initial data considered, though,

were in fact rough, instead of smooth. In fact, the choice of smooth initial data would

cancel out the backscattering contribution, thus, near extremality there would still be

a region in the parameter space where the CH might remain classically stable. For a

rigorous proof that the introduction of rough initial data can lead to classically unstable

CHs in RNdS see [47].

More recent studies by Costa, Girão, Natário and Silva [31, 32, 33, 34] considered

the structure of the BH interior starting with data along the event horizon satisfying

an exponential Price law decay. Then, the solutions to the Einstein-Maxwell-scalar field
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system can be extended continuously across the CH with continuous metric and square-

integrable Christoffel symbols, if appropriate conditions hold and the decay rate of the

exponential power law is chosen to be fast enough. Therefore, these qualitative studies

indicated that the modern formulation of SCC might be violated for near-extremally

charged dS BHs. The proof of exponential decay in RNdS and KdS was provided in [122],

and it was also shown that linear scalar waves are bounded and extend continuously up

to and including the CH [37].

Subsequent work by Hintz and Vasy [29, 30] showed that the metric and electro-

magnetic field decay, also, exponentially at the exterior of KdS and Kerr-Newman-dS

spacetime. Their non-linear analyses proves global stability under small perturbations of

the initial data, without symmetry assumptions. Besides global stability, it was shown

that the exponentially decaying perturbations are governed by the spectral gap α, that

is, the imaginary part of the lowest-lying/dominant, non-zero QNM.

Such results gives us the ability to appropriately test, for the first time, the modern

formulation of SCC in asymptotically dS spacetimes, quantitatively, by explicitly calcu-

lating the spectral gap α. The classical stability of CHs, therefore, narrows down to the

calculation of the dominant QNM families and their delicate interplay with the blueshift

effect.

From the former, we realize that the stability of CHs in asymptotically dS spacetimes

is an open field of study, where modern quantitative investigations are lacking. In the

following chapters of the thesis, we will tackle the stability of CHs in RNdS spacetimes

with state-of-the-art numerical simulations. The only ingredient missing to perform such

an investigation is the condition for which CHs in asymptotically dS BHs will maintain

enough regularity for the solutions to the wave equation and the metric to extend contin-

uously with square-integrable derivatives beyond the CH. This condition is provided in

the next section.

5.4 Weak solutions of Einstein’s equations

Let us consider a matter field Φ back-reacting on a spacetime metric gµν , which satisfies

proper equations of motion. The Einstein field equations reads

Gµν + Λgµν = 8πTµν . (5.1)

Schematically, Gµν ∼ Γ2 +∂Γ, where Γ represents the Christoffel symbols proportional to

gradients of the spacetime metric, ∂gµν (we have dropped the indexes in Γijk for simplicity).
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If we assume that Φ and gµν are not necessarily twice continuously differentiable, then

we can still make weak sense of (5.1) by multiplying it with an arbitrary smooth, compact

supported, function ψ0 and integrating in a small neighborhood V∫
V
d4x
√
−g (Γ2 + ∂Γ)ψ0 +

∫
V
d4x
√
−gΛgµνψ0 = 8π

∫
V
d4x
√
−g Tµν ψ0. (5.2)

The purpose of the test function ψ0 is to carry away derivatives from fields without leaving

non-zero terms when we perform integration by parts. The function ψ0 is smooth, meaning

that it is infinitely differentiable, and therefore no matter how many derivative we carry

out to ψ0 it will always be integrable. If (5.2) is satisfied for any smooth function ψ0, then

we have a weak solution of (5.1).

For massless neutral scalar fields the energy momentum tensor is proportional to

Tµν ∼ (∂Φ)2. Therefore, (5.2) becomes∫
V
d4x
√
−g
(
Γ2ψ0 − Γ∂ψ0 + Λgµνψ0 − 8πψ0(∂Φ)2

)
= 0. (5.3)

The first term of (5.3) is finite if (∂gµν)
2 is integrable, the second term if ∂gµν is integrable

while the third term requests that gµν is continuous at the CH. The final term is finite∫
V
d4x
√
−g ψ0(∂Φ)2 <∞, (5.4)

provided we request that (∂Φ)2 is integrable. A requirement for (5.3) to be satisfied

weakly is, thus, integrability of (∂gµν)
2 and (∂Φ)2. Hence, the spacetime metric gµν and

scalar field Φ must belong to the Sobolev space H1
loc, that is the space of functions with

square integrable first derivatives. In vacuum (Φ = 0) the former translates to gµν ∈ C0,

Γ ∈ L2
loc, where C0 the space of continuous functions and L2 the space of square integrable

functions. This requirement corresponds to square integrability of the Christoffel symbols

[26].

To derive the condition for which (∂Φ)2 is square integrable at the CH of RNdS BHs,

and the SCC hypothesis is violated, we study the asymptotics of scalar waves there.

Consider a neutral massless scalar field obeying the wave equation

∂µ∂µΦ = 0. (5.5)

Due to the spherical symmetry of the RNdS backgrounds we are interested in, the scalar
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field can be expanded as

Φ =
∑
lm

ψ(r)Ylm(θ, ϕ)e−iωt. (5.6)

It is convenient to employ the outgoing Eddington-Finkelstein coordinates u ≡ t − r∗

which are regular at the CH. The solutions of (5.5) have the following asymptotic form

at the CH:

Φ(1) ∼ e−iω(t+r∗) = e−iω(u+2r∗) = e−iωue−2iωr∗ , (5.7)

Φ(2) ∼ e−iω(t−r∗) = e−iωu. (5.8)

Near the CH, the tortoise coordinate acquires the simplified form

r∗ =

∫
f−1dr ∼ log |r − r−|

f ′(r−)
, (5.9)

where f(r → r−) ∼ |r−r−| modulo irrelevant terms. Obviously, (5.8) is regular at the CH

since for r = r− (u = const.) Φ(2) is a smooth function. The potential non-smoothness

comes from (5.7)

Φ(1) ∼ e−iωue−2iω log(r−r−)/f ′(r−) = e−iωu|r − r−|−2iω/f ′(r−) = e−iωu|r − r−|iω/κ− , (5.10)

where κ− = |f ′(r−)|/2 the surface gravity at the CH (note that f ′(r−) < 0). If we consider

modes of the form ω = ωR + iωI , with ωI < 0, then

Φ(1) ∼ e−iωu|r − r−|iω/κ− = e−iωu|r − r−|iωR/κ− |r − r−|β (5.11)

where we defined β ≡ α/κ−, with α = inf{−Im(ω)} the spectral gap, or the imaginary

part of the dominant, non-zero QNM ω. In (5.11), the first factor is smooth at the CH and

the second is purely oscillatory. Hence, the potential non-smoothness comes from the third

factor of (5.11). Since we want (∂Φ)2 to be integrable at the CH for SCC to be violated,

and since r is the only relevant coordinate to potentially introduce non-smoothness, we

require ∫
V
(∂rΦ

(1))2dr ∼
∫
V
|r − r−|2(β−1)dr ∼ |r − r−|

2β−1

2β − 1
<∞. (5.12)

For (5.12) to be satisfied at r ∼ r−

2β − 1 > 0⇔ β >
1

2
. (5.13)
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If (5.13) is satisfied, and since Φ and gµν share similar regularity requirements [29, 30, 27,

34, 109, 110, 111, 114], then (5.3) is bounded and we can obtain weak solutions at the

CH which can be extended smoothly. In this case we say that SCC is not respected.

It has been proven that (5.13) holds for fermionic [61] and gravitoelectric perturbations

[123] in RNdS, as well as scalar perturbations in higher-dimensional RNdS [62], and for

scalar and gravitational perturbations [124] in KdS spacetime. A more rigorous proof of

(5.13) for charged scalar and fermionic fields in 4−dimensional RNdS spacetime, as well

as bosonic fields in higher-dimensional RNdS spacetime, is provided in Appendices C, E

and D.

5.5 Concluding remarks

The seminal mathematical studies in [34, 31, 32, 33] have proved that the inclusion of a

positive cosmological constant and an exponential Price law decay of perturbations leads

to solutions to the Einstein-Maxwell-scalar field system which can be extended continu-

ously across the CH with continuous metric and square-integrable Christoffel symbols, if

the exponential decay is assumed to be fast enough. This provides a strong indication

that near-extremally charged RNdS BHs might be counter-examples of SCC.

The subsequent work in [37, 29, 30] demonstrated that the metric and electromagnetic

field decay, indeed, exponentially at the exterior of KdS and Kerr-Newman-dS spacetimes.

The proof demonstrates the non-linear stability of small perturbations of the initial data,

without symmetry assumptions. Besides global stability, these studies revealed that the

exponentially decaying perturbations are governed by the QNMs of the BH spacetime

while the stability of CHs in such spacetimes is intrinsically connected to the dominant

QNMs. Such result gives us the ability to test the modern formulation of SCC in asymp-

totically dS spacetimes, quantitatively, by calculating, for the first time and with high

accuracy, the dominant QNMs of RNdS spacetimes.

In Chapter 6 (based on [59]) we will perform a complete quantitative analysis of the

linear stability of CHs lying inside RNdS BHs against neutral scalar perturbations. We

have found three distinct families of QNMs which play an important role in the late time

behavior of the ringdown waveform. We will demonstrate that near-extremally charged

RNdS BHs are potential counter-examples of the linearized analogue of SCC. Previous

work [27] suggests that one can extrapolate from the analogy Φ → gµν , ∂Φ → Γ and

realize that SCC is not respected for the Einstein-Maxwell theory. Many subsequent

studies emerged after [59].
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In [125], it was argued that a charged scalar field would reinforce SCC if the scalar

field is highly massive and charged. Such an argument led to the work illustrated in

Chapter 7 (based on [60]). We demonstrate that even a charged massive scalar field

can violate SCC for a finite volume of the subextremal parameter space of RNdS space.

Two subsequent studies [126, 127] also demonstrated that charged scalar fields in RNdS

provide a counter-example to the linearized analogue of SCC.

Although scalar perturbations can be considered a good probe of metric perturbations,

such a study was lacking till recently. In [123] it is demonstrated that metric perturbations

pose even a more severe threat to the validity of SCC. Such perturbations not only reveal

the possibility of extensions as weak solutions to the field equations but also extensions

as classical solutions. In fact, one can extend the spacetime in an arbitrarily smooth way

past the CH of “large” near-extremal RNdS BHs.

An interesting suggestion to restore SCC in charged BHs with a positive cosmological

constant, was proposed in [47], where it was shown that the pathologies identified in

Chapter 6 become non-generic if one considerably enlarges the allowed set of initial data by

weakening their regularity. The considered data are also compatible with Christodoulou’s

formulation of SCC.

At that point, all linear studies were performed in spherical symmetry. The work in

[124] demonstrated that scalar and gravitational perturbations of KdS BHs do not violate

the linearized analogue of SCC! This means that astrophysical BHs are not counter-

examples of SCC. In any case, if we wish to consider SCC as a mathematical tool of

testing GR and its limits then our results are not to be taken lightly.

The generalization to charged fermionic perturbations in the context of SCC is per-

formed in Chapter 8 (based on [61]) and [128]. It is shown that even Dirac fields in

near-extremally charged RNdS provide a counter-example to the linearized analogue of

SCC. In Chapter 8 we further extend the analysis of fermions to highly near-extremal

RNdS spacetime and provide numerical evidence which demonstrate that even for arbi-

trarily high fermionic charges, SCC is still violated. A thorough analysis of the different

families of QNMs will also be provided.

Up until that point, only linearized studies were performed to test the validity of SCC.

The first numerical calculations with a self-gravitating scalar field [129] demonstrated that

backreaction does not reinforce SCC but rather, the Einstein-Maxwell-scalar field model

is a serious counter-example to the SCC conjecture, in accordance with the predictions in

Chapter 6.

In Chapter 9 (based on [62]) we demonstrate that the linearized analogue of SCC
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is still violated, even in higher-dimensional RNdS spacetimes. The three families of

modes exhibit a very delicate interplay which leads to the conclusion that “small” higher-

dimensional BHs are preferred against “large” 4−dimensional ones to the preserve SCC

in larger volumes of the subextremal parameter space.

Many more studies have emerged so far concerning the linearized analogue of SCC

against different kinds of matter fields in BH spacetimes with a positive cosmological

constant and a CH. All of them, including the ones discussed, are motivated from our

initial study in Chapter 6 and the subsequent ones in Chapters 7, 8 and 9. For an

incomplete list see [130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140].
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6

Quasinormal modes and Strong

Cosmic Censorship

The fate of CHs, such as those found inside charged BHs, is intrinsically connected to

the decay of small perturbations exterior to the event horizon. As such, the validity

of the SCC conjecture is tied to how effectively the exterior damps fluctuations. Here,

we study massless scalar fields in the exterior of RNdS BHs. Their decay rates are

governed by QNMs of the BHs. We identify three families of modes in these spacetimes:

one directly linked to the photon sphere, well described by standard WKB-type tools;

another family whose existence and timescale is closely related to the dS horizon. Finally,

a third family which dominates for near-extremally-charged BHs and which is also present

in asymptotically flat spacetimes. The last two families of modes seem to have gone

unnoticed in the literature. We give a detailed description of linear scalar perturbations

of such BHs, and conjecture that SCC is violated in the near extremal regime. The

following chapter is based on [59].

6.1 Introduction

The study of the decay of small perturbations has a long history in GR. An increasingly

precise knowledge of the quantitative form of the decay of fluctuations is required to

advance our understanding of gravitation, from the interpretation of gravitational wave

data to the study of fundamental questions like the deterministic character of GR.

The well-known appearance of CHs in astrophysically relevant solutions of Einstein’s

equations signals a potential breakdown of determinism within GR—the future history

of any observer that crosses such a horizon cannot be determined using the Einstein field
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equations and the initial data! Nonetheless, in the context of BH spacetimes, one ex-

pects that perturbations of the exterior region might be infinitely amplified by a blueshift

mechanism, turning a CH in the BH interior into a singularity/terminal boundary beyond

which the field equations cease to make sense. Penrose’s SCC conjecture substantiates

this expectation.

On the other hand, astrophysical BHs are expected to be stable due to perturbation

damping mechanisms acting in the exterior region. Therefore, whether or not SCC holds

true hinges to a large extent on a delicate competition between the decay of perturba-

tions in the exterior region and their (blueshift) amplification in the BH interior. For

concreteness, let Ψ be a linear scalar perturbation (i.e., a solution of the wave equation)

on a fixed subextremal RN, asymptotically flat or dS BH, with cosmological constant

Λ ≥ 0. Regardless of the sign of Λ, in standard coordinates, the blueshift effect leads to

an exponential divergence governed by the surface gravity of the CH κ−.

Now the decay of perturbations depends crucially on the sign of Λ. For Λ = 0, Ψ

satisfies an inverse power law decay [52, 53, 56, 141] which is expected to be sufficient

to stabilize the BH while weak enough to be outweighed by the blueshift amplification.

Various results [98, 107, 27, 109, 110] then suggest that, in this case, the CH will become,

upon perturbation, a mass inflation singularity, strong enough to impose the breakdown

of the field equations.

For Λ > 0, the situation changes dramatically. In fact, it has been shown rigorously

that, for some Ψ0 ∈ C [142, 143, 122, 144],

|Ψ−Ψ0| ≤ Ce−αt , (6.1)

with α the spectral gap, i.e., the size of the QNM-free strip below the real axis. Moreover,

this result also holds for non-linear coupled gravitational and electromagnetic perturba-

tions of Kerr–Newman–dS (with small angular momentum) [29, 30]. This is alarming

as the exponential decay of perturbations might now be enough to counterbalance the

blueshift amplification. As a consequence the fate of the CH now depends on the relation

between α and κ−. Will it still, upon perturbation, become a “strong enough” singularity

in order to uphold SCC?

A convenient way to measure the strength of such a (CH) singularity is in terms of

the regularity of the spacetime metric extensions it allows [33, 145, 146]. For instance,

mass inflation is related to inextendibility in (the Sobolev space) H1 which turns out

to be enough to guarantee the non-existence of extensions as (weak) solutions of the

Einstein equations [115], i.e., the complete breakdown of the field equations. As a proxy
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for extendibility of the metric itself, we will focus on the extendibility of a linear scalar

perturbation. On a fixed RNdS, the results in [37] (compare with [147]) show that Ψ

extends to the CH with regularity at least

H1/2+β , β ≡ α/κ− . (6.2)

Now the non-linear analysis of [29, 30, 34, 111] suggests that the metric will have similar

extendibility properties as the scalar field. It is then tempting to conjecture, as was done

before in Refs. [148, 27, 31]: if there exists a parameter range for which β > 1/2 then

the corresponding (cosmological) BH spacetimes should be extendible beyond the CH with

metric in H1.1 Even more strikingly, one may be able to realize some of the previous

extensions as weak solutions of the Einstein equations. This would correspond to a severe

failure of SCC, in the presence of a positive cosmological constant!

The construction of bounded Hawking mass solutions of the Einstein-Maxwell-scalar

field system with a cosmological constant allowing for H1 extensions beyond the CH was

carried out in [34].

It is also important to note that if β is allowed to exceed unity then (by Sobolev

embedding) the scalar field extends in C1; the coupling to gravity should then lead to the

existence of solutions with bounded Ricci curvature. Moreover, for spherically symmetric

self gravitating scalar fields, the control of both the Hawking mass and the gradient of the

field is enough to control the Kretschmann scalar [33]. We will henceforth relate β < 1 to

the blow up of curvature components.

At this moment, to understand the severeness of the consequences of the previous

discussion, what we are most lacking is an understanding of how the decay rate of per-

turbations α is related to κ−. Since α is the spectral gap, this can be achieved by the

computation of the QNMs of RNdS BHs. The purpose of this work is to perform a

comprehensive study of such modes and to discuss possible implications for SCC by de-

termining β throughout the parameter space of RNdS spacetimes.

1see also Section 5.4 and Appendix C for a rigorous proof of the requirement β > 1/2.
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6.2 Setting

We focus on charged BHs in dS spacetimes, the RNdS solutions. In Schwarzschild-like

coordinates, the metric reads

ds2 = −f(r)dt2 +
dr2

f(r)
+ r2(dθ2 + sin2 θdφ2) , (6.3)

where f(r) = 1− 2Mr−1 + Q2r−2 − Λr2/3. M, Q are the BH mass and charge and Λ is

the cosmological constant. The surface gravity of each horizon is then

κi =
1

2
|f ′(ri)| , i ∈ {−,+, c} , (6.4)

where r− < r+ < rc are the CH, event horizon and cosmological horizon radius. A

minimally coupled scalar field Ψ on a RNdS background with harmonic time dependence

can be expanded in terms of spherical harmonics,

Ψ ∼
∑
lm

ψlm(r)

r
Ylm(θ, φ)e−iωt . (6.5)

Dropping the subscripts on the radial functions, they satisfy the equation

d2ψ

dr2
∗

+
(
ω2 − Vl(r)

)
ψ = 0 , (6.6)

where we introduced the tortoise coordinate dr∗ = dr/f(r). The effective potential for

scalar perturbations is

Vl(r) = f(r)

(
l(l + 1)

r2
+
f ′(r)

r

)
, (6.7)

where l is an angular number, corresponding to the eigenvalue of the spherical harmonics.

We will be mostly interested in the characteristic frequencies of this spacetime, obtained

by imposing the boundary conditions

ψ(r → r+) ∼ e−iωr∗ , ψ(r → rc) ∼ eiωr∗ , (6.8)

which select a discrete set of frequencies ωln, called the QN frequencies [17]. They are

characterized, for each l, by an integer n ≥ 0 labeling the mode number. The fundamental

mode n = 0 corresponds, by definition, to the longest-lived mode, i.e., to the frequency

with the smallest (in absolute value) imaginary part.



6. Quasinormal modes and Strong Cosmic Censorship 59

To determine the spectral gap α, and hence the decay rate of perturbations, we will

focus on the set of all modes ωln
2 and set

α ≡ inf ln {− Im(ωln)} , β ≡ α/κ− . (6.9)

We will henceforth drop the “ln” subscripts to avoid cluttering. In previous works, we

have used a variety of methods to compute the QNMs [17, 149]. The results shown here

were obtained mostly with the Mathematica package of [79] (based on methods developed

in [80]), and checked in various cases with a variety of other methods [17, 149, 73, 150].

6.3 QNMs of RNdS BHs: the three families

Our results are summarized in Figs. 6.1-6.3 where one can distinguish three families of

modes:

6.3.1 Photon sphere modes

BHs and other sufficiently compact objects have trapping regions. Here, null particles

can be trapped on circular unstable trajectories, defining the photon sphere. This region

has a strong pull in the control of the decay of fluctuations and the spacetime’s QNMs

which have large frequency (i.e., large |Reω|) [151, 63, 152, 122]. For instance, the decay

timescale is related to the instability timescale of null geodesics near the photon sphere.

For BHs in dS space, we do find a family of modes which can be traced back to the

photon sphere. We refer to them as “photon sphere modes,” or in short “PS” modes.

These modes are depicted in blue (solid line) in Figs. 6.1-6.3. Different lines correspond

to different overtones n; the fundamental mode is determined by the large l limit (and

n = 0); we find that l = 10 or l = 100 provide good approximations of the imaginary

parts of the dominating mode; note however that the real parts do not converge when

l → ∞. These modes are well-described by a WKB approximation, and for very small

cosmological constant they asymptote to the Schwarzschild BH QNMs [149].

For small values of the cosmological constant, PS modes are only weakly dependent

on the BH charge. This is apparent from Fig. 6.1. For ΛM2 > 1/9 there is now a nonzero

minimal charge, at which r+ = rc. This limit is the charged Nariai BH and is shown as

the blue dashed line in Fig. 6.2. The corresponding QNMs are also qualitatively different,

as seen in Fig. 6.1. They in fact vanish in this limit, a result that can be established by

2For l = 0 there is a zero mode, corresponding to Ψ0 in Eq. (6.1), which we ignore here.
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solving the wave equation analytically to obtain (see Ref. [153] for the neutral case, we

have generalized it to charged BHs, see Section 6.6)

Im(ω)

κ+

= −i
(
n+

1

2

)
. (6.10)
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Figure 6.1: Lowest lying quasinormal modes for l = 1 and ΛM2 = 0.06 (left) and 0.14

(right), as a function of Q/M . The top plots show the imaginary part, with dashed red

lines corresponding to purely imaginary modes, and solid blue to complex, “PS” modes,

whose real part is shown in the lower plots. The red circles in the top plots indicate

the modes of empty de Sitter at the same Λ, which closely matches the first imaginary

mode here, but lie increasingly less close to the higher modes. Near the extremal limit

of maximal charge, another set of purely imaginary modes (dotted green lines) comes in

from −∞ and approaches 0 in the limit. Only a finite number of modes are shown, even

though we expect infinitely many complex and extremal modes in the range shown.

Note that the results presented here are enough to disprove a conjecture [35] that sug-

gested that α should be equal to min{κ+, κc}. Such possibility is inconsistent with (6.10)

and it is also straightforward to find other non-extremal parameters for which the WKB
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prediction yields smaller α’s (e.g. for ΛM2 = 0.1 and Q = 0 we have κ+ = 0.06759,

κc = 0.05249, and α = 0.03043).

6.3.2 dS modes

Note that solutions with purely imaginary ω exist in pure dS spacetime [154, 155, 156]

ω0,pure dS/κ
dS
c = −il , (6.11)

ωn6=0,pure dS/κ
dS
c = −i(l + n+ 1) . (6.12)

Our second family of modes, the (BH) dS modes, are deformations of the pure dS

modes (6.12); the dominant mode (l = 1, n = 0) is almost identical and higher modes

have increasingly larger deformations.

These modes are intriguing, in that they have a surprisingly weak dependence on

the BH charge and seem to be described by the surface gravity κdS
c =

√
Λ/3 of the

cosmological horizon of pure dS space, as opposed to that of the cosmological horizon in

the RNdS BH under consideration. This can, in principle, be explained by the fact that

the accelerated expansion of the RNdS spacetimes is also governed by κdS
c [157, 158].

This family has been seen in time-evolutions [36, 58] but, to the best of our knowl-

edge, was only recently identified in the QNM calculation of neutral BH spacetimes [79].

Furthermore, our results indicate that as the BH “disappears” (ΛM2 → 0), these modes

converge to the exact dS modes (both the eigenvalue and the eigenfunction itself).

6.3.3 Near-extremal modes

Finally, in the limit that the Cauchy and event horizon radius approach each other, a

third “near extremal” family, labeled as ωNE, dominates the dynamics. In the extremal

limit this family approaches

ωNE = −i(l + n+ 1)κ− = −i(l + n+ 1)κ+ , (6.13)

independently of Λ, as shown by our numerics. As indicated by (6.13), the dominant

mode in this family is that for l = 0, this remains true away from extremality.

In the asymptotically flat case, such modes seem to have been described analytically

in Refs. [159, 160]. Here we have shown numerically that such modes exist, and that

they are in fact the limit of a new family of modes. It is unclear if the NE family is a

charged version of the Zero-Damping-Modes discussed recently in the context of rotating
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Kerr BHs [161]. It is also unclear if there is any relation between such long lived modes

and the instability of exactly extremal geometries [112, 162].

6.4 Maximizing β
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Figure 6.2: Parameter space of the RNdS solutions, bounded by a line of extremal solu-

tions of maximal charge where r− = r+ on top, and for ΛM2 > 1/9 a line of extremal

solutions where rc = r+. In the physical region the value of β is shown. For small ΛM2

the dominant mode is the l = 1 de Sitter mode, shown in shades of red. For larger ΛM2

the dominant mode is the large l complex, PS mode, here showing the l = 100 WKB

approximated mode in shades of blue. For very large Q/M the l = 0 extremal mode

dominates. The green sliver on top where the NE mode dominates is merely indicative,

the true numerical region is too small to be noticeable on these scales.

The dominating modes of the previous three families determine β, shown in Fig. 6.2. Each

family has a region in the parameter space where it dominates over the other families.

The dS family is dominant for “small” BHs (when ΛM2 . 0.02). In the opposite

regime the PS modes are dominant. Notice that in the limit of minimal charge β = 0,

since κ− remains finite while the imaginary parts of QNMs in the PS family approach
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0 according to (6.10) (since κ+ → 0). More interesting is the other extremal limit, of

maximal charge. In Fig. 6.2, the uppermost contours of the dS and PS families show a

region where β > 1/2. Within this region as the charge is increased even further, the NE

family becomes dominant. In Fig. 6.2 this is shown merely schematically, as the region is

too small to plot on this scale, but it can already be seen in Fig. 6.1.
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Figure 6.3: Dominant modes of different types, showing the (nearly) dominant complex

PS mode (blue, solid) at l = 10, the dominant de Sitter mode (red, dotted) at l = 1 and

the dominant NE mode (green, dashed) at l = 0. The two dashed vertical lines indicate

the points where β ≡ − Im(ω)/κ− = 1/2 and where the NE becomes dominant. (Note

that the value of β is only relevant for Λ > 0.)

To see more clearly how β behaves in the extremal limit we show 4 more constant ΛM2

slices in Fig. 6.3. Here one sees clearly how above some value of the charge β > 1/2, as

dictated by either the dS or the PS family. Increasing the charge further, β would actually

diverge if it were up to these two families (ωM approaches a constant for both families,

so ω/κ− diverges). However, the NE family takes over to prevent β from becoming larger
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than 1. Further details on these modes and on the maximum β are shown in Section 6.6.

6.5 Conclusions

The results in [29, 30] show that the decay of small perturbations of dS BHs is dictated by

the spectral gap α. At the same time, the linear analysis in [37] and the non-linear analysis

in [34] indicate that the size of β ≡ α/κ− controls the stability of CHs and consequently

the fate of the SCC conjecture. Recall that for the dynamics of the Einstein equations,

and also for the destiny of observers, the blow up of curvature (related to β < 1) per se is

of little significance: it implies neither the breakdown of the field equations [100] nor the

destruction of macroscopic observers [101].

In fact, a formulation of SCC in those terms is condemned to overlook relevant physical

phenomena like impulsive gravitational waves or the formation of shocks in relativistic

fluids. For those and other reasons, the modern formulation of SCC, which we privilege

here, makes the stronger request β < 1
2

in order to guarantee the breakdown of the field

equation at the CH.

Here, by studying (linear) massless scalar fields and searching through the entire pa-

rameter space of subextremal and extremal RNdS spacetimes, we find ranges for which β

exceeds 1/2 but, remarkably, it doesn’t seem to be allowed, by the appearance of a new

class of “near-extremal” modes, to exceed unity! This opens the perspective of having

CHs which, upon perturbation, can be seen as singular, by the divergence of curvature

invariants, but nonetheless maintain enough regularity as to allow the field equations to

determine (classically), in a highly non-unique way, the evolution of gravitation.

This corresponds to a severe failure of determinism in GR that cannot be taken lightly

in view of the importance that a cosmological constant has in cosmology and the fact that

the pathologic behavior is observed in parameter ranges which are in loose agreement with

what one expects from the parameters of some astrophysical BHs. Of course, astrophysical

BHs are expected to be neutral and here we are dealing with charged BHs. This is

justified by the standard charge/angular momentum analogy, where near-extremal charge

corresponds to fast rotating BHs [163, 164, 165].
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6.6 Supplementary material

6.6.1 The eigenfunctions

The difference between PS, dS and NE modes is also apparent from the eigenfunction

itself. It is useful to define a re-scaled function ψ(r) as,

Ψ(r) = (r − r+)−iω/(2κ+)ψ(r)(rc − r)−iω/(2κc) . (6.14)

The conditions on ψ(r) are that it approaches a constant as r → r+, rc. Figure 6.4 shows

the behavior of ψ for different modes, for a specific set of RNdS parameters. Although

not apparent, there is structure close to the photon sphere for the PS eigenfunction.

6.6.2 Analytic solutions for rc = r+

In the limit rc = r+, the limit of minimal charge for ΛM2 ≥ 1/9, the QNMs can be

found analytically. In this limit, Eq. (6.6) with potential (6.7), written in the coordinate

x = (r − r+)/(rc − r+), becomes(
4r+x(1− x)

3− 2r+

l(l + 1) + λ2

)
ψ(x)+4x(1−x)(1−2x)ψ′(x)+4x2(1−x)2ψ′′(x) = 0 (6.15)

where we defined λ ≡ ω/κ+ and we have set M = 1, which can be restored in the end by

dimensional analysis. This equation has the solutions

ψ(x) = c1P
iλ
α (2x− 1) + c2Q

iλ
α (2x− 1) , (6.16)

where P,Q are the Legendre P and Q functions, and

α =
1

2

(
−1 +

√
1− 2r+

r+ − 3/2
l(l + 1)

)
. (6.17)

Now, analysis of the asymptotic behavior near x = 0 and x = 1 shows that we can only

satisfy the “outgoing” boundary conditions [17] when c2 = 0 and λ is either λ = −i(α+n),

or λ = −i(n+ 1− α). These combine to give

ω

κ+

= ±1

2

√
−1 + l(l + 1)

2r+

r+ − 3/2
− i
(
n+

1

2

)
, (6.18)
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Figure 6.4: Scalar wavefunctions ψ(x) (defined in Eq. (6.14), with x = (r−r+)/(rc−r+))

of the dominant mode of each of the three families, at ΛM2 = 0.02 and Q/Qmax ≈ 0.9966,

as indicated in the top right of Fig. 6.3. Shown are the near extremal mode with ωNE/κ− =

−0.87005i (for l = 0, green dotted line), the dS mode with ωdS/κ− = −0.87043i (for l = 1,

red dashed line), and the complex mode with ωC/κ− = 26.448 − 0.89101i (for l = 10,

blue solid and dash-dotted line for real and imaginary parts). The solid vertical black line

indicates the light ring.

Restoring units we obtain,

ω

κ+

= ±1

2

√
−1 + 2l(l + 1)Υ− i

(
n+

1

2

)
, (6.19)

Υ =
γ2 + 21/3ΛM2

γ2 + (21/3 − 3× 2−1/3γ)ΛM2
,

γ =
(
−3(ΛM2)2 + (ΛM2)3/2

√
(9ΛM2 − 2)

)1/3

.

The argument of the square root in (6.19) is positive. The imaginary part of these

frequencies is exactly the same as that of the neutral Nariai BH [153]. The real part is

different and now depends also on Λ, but asymptotes to the previous result for Q = 0

(i.e., Λ = 1/9), as it should. It is an interesting feature that when ΛM2 → 2/9, Υ, and

therefore the real part of ω/κ+, diverges.
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6.6.3 Searching for long-lived modes

Here we address the question whether there might be a more slowly decaying mode that

we have missed and could save SCC. If such a mode exists, it would be highly unlikely to

be part of the three families we found, since we can follow their continuous change as the

BH parameters are varied, as shown in the figures. Furthermore, the known modes in the

limiting cases are all accounted for, and we never observed any mode crossings for given

family and angular momentum l.

l ω0/κ−

0 -0.8539013779 i(61)

1 3.2426164126 - 0.7958326323 i(67)

( -1.5003853731 i(64))

2 5.4796067815 - 0.7754179185 i(69)

3 7.7016152057 - 0.7699348317 i(70)

4 9.9181960834 - 0.7676996545 i(73)

5 12.1322536641 - 0.7665731858 i(75)

10 23.1897597770 - 0.7649242108 i(80)

100 222.0602900249 - 0.7643094446 i(82)

Table 6.1: The dominant QNMs for a range of angular momenta `, in units of the

surface gravity of the CH, for the BH with ΛM2 = 0.06 and Q/Qmax = 0.996. The bold,

underlined modes at l = 0, 1 and 10 are the dominant modes for the NE, dS and PS

modes respectively, as seen also in the bottom left of Fig. 6.3. Note that the dS mode

is subdominant even for fixed l = 1, and the PS mode at l = 10 is only dominant to

very good approximation, the true dominant mode being that with l → ∞. Numbers

in brackets indicate the number of agreed digits in the computations with grid size and

precision (N, p) = (400, 200) and (450, 225).

It is theoretically possible, though also very unlikely, that there is a fourth family

(with anywhere between a single and infinitely many members) that we have missed.

Typically, smaller eigenvalues are found more easily than larger eigenvalues, making

it more unlikely to miss the dominant mode. It could be however that the correspond-

ing eigenfunction is either very sharply peaked or highly oscillatory, in which cases it
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would require a large number of grid points to be resolved accurately enough. This again

decreases the possibility that we have missed something. We will rule out this last sce-

nario, as best as we can numerically, as follows. We pick a representative BH for which

β > 1/2, indicating violation of SCC, namely ΛM2 = 0.06 and Q/Qmax = 0.996. For

these BH parameters we compute the QNMs for various angular momenta l as shown in

Table 6.1. There is no new QNM that is more dominant than those found before, except

as expected the l = 100 photon sphere mode, but not significantly, note the extremely

rapid convergence with increasing l.

The main method we use essentially discretizes the equation and rearranges it into

a generalized eigenvalue equation, whose eigenvalues are the QNMs (see [79] for more

details). This has two technical parameters, the number of grid points N and the precision

p (number of digits) used in the computation. To be sure that the obtained results are

not numerical artefacts one has to repeat the computation at different (N, p) and test for

covergence, which we have done for all results shown.

The computation here was done at even higher accuracy than in the main results,

with (N, p) = (400, 200) and (450, 225). The most we used previously was (300, 150)

and (350, 175) (near extremality, away from extremality a much lower accuracy usually

suffices). The number in brackets behind each mode in Table 6.1 is the number of digits

that agrees between the computations at these two accuracies.

We checked that even before testing for convergence, there are no modes with imagi-

nary part smaller (in absolute sense) than shown in Table 6.1. This confirms our results

with as much certainty as one can reasonably expect from a numerical result.
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7

Strong Cosmic Censorship in

charged black-hole spacetimes: still

subtle

In Chapter 6 it was shown that SCC may be violated in highly charged BH spacetimes

living in a universe with a positive cosmological constant. Several follow-up works have

since suggested that such result, while conceptually interesting, cannot be upheld in prac-

tice. We focus here on the claim that the presence of charged massive scalars suffices to

save SCC. To the contrary, we show that there still exists a finite region in parameter

space where SCC is expected to be violated. The following chapter is based on [60].

7.1 Introduction

In Chapter 6 we presented an indication that SCC might be violated for charged, near-

extremal RN BHs in a dS spacetime. More precisely, for linear massless and neutral scalar

perturbations of RNdS BHs, the basic quantity controlling the stability of the CH, and

therefore the fate of SCC, is given by [37]

β ≡ −Im(ω0)/κ− , (7.1)

where ω0 is the longest-lived non-zero QNM and κ− is the surface gravity of the CH.

Moreover, the results in [29, 30, 34] suggest that β remains the essential quantity in

the non-linear setting: the higher β, the more stable the CH. Concretely, the modern
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formulation of SCC1 demands that

SCC↔ β < 1/2 (7.2)

in order to guarantee the breakdown of the field equation at the CH. One should also

recall that β < 1 is related to the blow up of curvature invariants. In Chapter 6, a

thorough numerical study of β for the full range of subextremal RNdS spacetimes revealed,

quite surprisingly, that β > 1/2 in the near-extremal regime. However, it turned out

that β ≤ 1 always, with equality at extremal charge. This provides evidence for the

existence of CHs which, upon perturbation, are rather singular due to the divergence of

curvature invariants, but where the gravitational field can still be described by the field

equations; the evolution of gravitation beyond the CH however is highly non-unique. This

corresponds to a severe failure of determinism in GR.

There are different ways to interpret the results of Chapter 6. One could take the

SCC conjecture in its conceptual version, where SCC is purely a mathematical question

about GR and its limits. Then the results of Chapter 6 either signify a failure of SCC,

or are superseded by nonlinear effects. Here, we have nothing else to add on this purely

mathematical question.

Alternatively, one can interpret the SCC conjecture in an anthropic-astrophysical

sense, where restrictions arising from experimental or observational data (including grav-

itational waves, BH and cosmological observations, or information arising from particle

physics) need to be taken into account. In other words, in such a viewpoint GR would

need to be supplemented with all the fields of the Standard Model and perhaps even with

quantum-gravity effects. In this context, the following are commonly accepted facts:

i. first, BHs in our universe are nearly neutral. Electromagnetic charge is quickly neu-

tralized by either environmental plasma, Schwinger pair-creation or Hawking evapora-

tion [166]. In light of this, one can question the relevance of SCC violations in highly

charged, non-spinning BH spacetimes;

ii. to form a charged BH, charged matter is necessary. Thus, SCC violation with only

neutral fields is unrealistic, and needs to be generalized to charged fields as well.

The results of Chapter 6 were followed by various attempts to save the conjecture,

supported by observation i. or ii. above. Firstly, it was shown that the CHs of rapidly

rotating BHs in cosmological backgrounds behave differently from those of highly charged

BHs [124]. According to Ref. [124], in KdS Eq. (7.2) remains valid, but now β seems to

be bounded exactly by 1/2, with the bound being saturated at extremality. Such a result

1inextendibility of metric coefficients in H1
loc and of Christoffel symbols in L2

loc across the CH.
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might suffice to save SCC in the context of astrophysical BHs. However, the behavior of

rapidly spinning, but weakly charged BHs is unknown, and these may well exist in our

Universe.

Here, we will discuss another work [125] providing evidence that when point ii. above

is taken into account and charged scalars are considered, then β < 1/2 in an appropriate

region of parameter space, and consequently SCC is upheld. This last implication requires,

first of all, the validity of (7.2) for charged scalars, which does require a justification 2. In

Appendix C we show that Eq. (7.2) does generalize in the expected way, with the critical

value being, once again, β = 1/2. In addition, the methods in Ref. [125] require working

in the large-coupling regime qQ � max(µ r+, l + 1), with Q the BH charge, q the field

charge, µ the scalar field mass, and r+ the radius of the event horizon.

We finish this section by acknowledging yet another interesting recent suggestion to

remedy SCC, in the presence of a positive cosmological constant: in Ref. [47], it was

shown that the pathologies identified in Chapter 6 become non-generic if one consider-

ably enlarges the allowed set of initial data by weakening their regularity. Although the

considered data are compatible with the modern formulation of SCC, we believe that

SCC is, in essence, a formation of singularities problem3 which is mainly of interest for

regular initial data; the mechanism of SCC becomes obscured if one considers initial data

which are too “rough” (compare with the problem of the formation of shocks in fluid

mechanics [167]).

7.2 Charged Scalar Perturbations of RNdS

The purpose of our work is to explore the decay of charged scalar fields in the full range

of charge coupling qQ and various choices of scalar masses (µM)2 on those RNdS BH

backgrounds which were identified as pathological in Chapter 6. We will then be address-

ing concern ii. above. Note that a deeper understanding of concern ii. would also require

the study of fermions. Such study is provided in Chapter 8. We will show that it is not

necessary to impose lower bounds on the scalar field mass to obtain β < 1/2. On the

other hand, we will demonstrate that for small charge coupling one can still find regions

in parameter space where SCC is violated (β > 1/2).

2We stress the fact that the relation (7.2) is not universal. In fact, for BHs with vanishing cosmological
constant the value of β seems to be irrelevant in the context of SCC [109, 110].

3In contrast, Weak Cosmic Censorship is concerned with the avoidance of naked singularities.
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The background spacetime is a charged RNdS,

ds2 = −f(r)dt2 +
dr2

f(r)
+ r2(dθ2 + sin2 θdφ2) , (7.3)

where f(r) = 1 − 2Mr−1 + Q2r−2 − Λr2/3. Here, M, Q are the BH mass and charge,

respectively, and Λ > 0 is the cosmological constant. The surface gravity of each horizon

is then

κi =
1

2
|f ′(ri)| , i ∈ {−,+, c} , (7.4)

where r− < r+ < rc are the CH, event horizon and cosmological horizon radius. A

minimally coupled charged massive scalar field Ψ on a RNdS background with harmonic

time dependence can be expanded in terms of spherical harmonics,

Ψ ∼
∑
lm

ψlm(r)

r
Ylm(θ, φ)e−iωt . (7.5)

Dropping the subscripts on the radial functions, they satisfy the equation

d2ψ

dr2
∗

+
[
(ω − Φ(r))2 − Vl(r)

]
ψ = 0 , (7.6)

where Φ(r) = qQ/r is the electrostatic potential, q the charge of the scalar field and

dr∗ = dr/f(r) the tortoise coordinate. The effective potential for scalar perturbations is

Vl(r) = f(r)

(
µ2 +

l(l + 1)

r2
+
f ′(r)

r

)
, (7.7)

where l is an angular number, corresponding to the eigenvalue of the spherical harmonics,

and µ the mass of the scalar field. We are interested in the characteristic quasinormal

(QN) frequencies ωln of this spacetime, obtained by imposing the boundary conditions [17]

ψ(r → r+) ∼ e−i(ω−Φ(r+))r∗ , ψ(r → rc) ∼ ei(ω−Φ(rc))r∗ .

The QN frequencies are characterized, for each l, by an integer n ≥ 0 labeling the mode

number. The fundamental mode n = 0 corresponds, by definition, to the non-vanishing

frequency with the largest imaginary part and will be denoted by ω0 6= 0.

As shown in Appendix C, for qQ 6= 0 the stability of the CH continues to be determined

by (7.1). We note that the only vanishing mode we find (see results below) corresponds

to the trivial mode at l = 0 and q = µ = 0. In fact, massless, neutral scalars can always
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be changed by an additive constant without changing the physics. Thus, the zero mode

is irrelevant for the question of stability of the CH and consequently must be discarded

in the definition of β.

The results shown in the following sections were obtained mostly with the Mathematica

package of [79] (based on methods developed in [80]), and checked in various cases with

a WKB approximation [150].

7.3 QNMs of massless, neutral scalar fields

In Chapter 6, we found 3 qualitatively different families of QNMs: the PS family, the dS

family and the NE family. The first two connect smoothly to the modes of asymptotically

flat Schwarzschild and of empty dS, respectively, while the last family cannot be found

in either of these spacetimes. Finally, apart from the previous 3 families (for q = µ = 0)

there is also a single orphan mode—the trivial zero mode at l = 0.

7.4 Charged Massless Scalars

Since the main point of the current work is to investigate if the inclusion of charged matter

saves SCC, we will restrict ourselves to choices of near extremal BH parameters identified

as problematic in Chapter 6 from the point of view of SCC. Since the dependence on

the cosmological constant was found to be minimal (provided that it is positive), we will

restrict to ΛM2 = 0.06 throughout this chapter. We expect our results to be qualitatively

independent of this choice.

The BH charges we consider are:

1−Q/Qmax = 10−3, 10−4, 10−5 . (7.8)

According to our results (see Fig. 7.1, Fig. 7.2 and Section 7.7), in this parameter

range, the dominant mode is a spherically symmetric l = 0 mode. Note that this was

already the case for the massless, neutral scalars studied in Chapter 6. Note also that,

in view of our focus on near extremal charges, the PS and dS families are considerably

subdominant and, consequently, are not seen here.
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Figure 7.1: The two lowest QNMs of a charged, massless scalar perturbation of a RNdS

BH with ΛM2 = 0.06 and 1 − Q/Qmax = 10−3, 10−4, 10−5, as a function of the scalar

charge q. The purple modes originating from (ω, q) = (0, 0) are called superradiant modes,

while the green ones are the NE modes.

Consider first charged, massless scalars. In Fig. 7.1, the two most dominant QNMs

are shown, for each of the BH charges in (7.8). The green lines correspond to NE modes,

ωNE. At q = 0, we find 1/2 < β < 1, in agreement with our previous results in Chapter 6.

For q > 0, the NE modes are initially subdominant but eventually, for sufficiently large

qQ, become dominant and such that Im(ωNE)/κ− > −1/2, so β < 1/2 for such qQ. This

corroborates the arguments of [125] and extends them to the massless scalar setting. In

particular, we conclude that the large scalar mass condition of [125] is not necessary to

guarantee that β < 1/2: large qQ suffices.

The purple lines complicate the story. We call the corresponding QNMs superradiant

(SR) modes, as they are associated, for small qQ, with a superradiant instability [20]

(for larger qQ they are decaying modes). These modes were seen for the first time in

Ref. [88] and further analyzed in Refs. [89, 90]. They originate from the trivial mode of

the massless, neutral scalar, at l = 0, which corresponds to nothing more than a constant

shift in the scalar field. When we add charge or mass, the corresponding wave equation

no longer admits constant solutions, the trivial mode disappears and gives rise to the
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dynamical mode seen in Fig. 7.1. For small coupling qQ, the SR modes are unstable,

Im(ω) > 0, with the maximum imaginary part increasing with the size of the BH charge.

This linear instability suggests that under evolution by the full Einstein equations, coupled

with the fields under consideration here, even the exterior of our RNdS BH will be severely

unstable; thus, we cannot infer anything about SCC in this case. A full spectral analysis

of such unstable modes of RNdS BHs is provided in Appendix F, while in Chapter 10

these unstable modes are discussed in higher-dimensional RNdS spacetimes.
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Figure 7.2: Lowest QNMs of a charged scalar perturbation of a RNdS BH with ΛM2 =

0.06 and 1−Q/Qmax = 10−5, as a function of the scalar charge q, for various scalar masses

(µM)2 = 0, 10−4, 10−3 and 10−1. The top 3 purple lines are SR modes, with the very top

one corresponding to the one with the same style in Fig. 7.1, and for the largest mass

(µM)2 = 10−1 the SR mode lies outside the plotted range. Green lines are NE modes, of

which the top three overlap.

However, it is also apparent from Fig. 7.1 that the SR modes cross the Im(ω) = 0

at qQ ≈ 0.248 (which to a good approximation is independent of the particular NE BH

charge). The modes then become stable and, eventually, subdominant—the dominant

mode becomes the one arising from the NE family. Very interestingly however, by in-

spection of Fig. 7.1, we find that there are choices of parameters for which β > 1/2: this

happens for instance when 1−Q/Qmax = 10−5 and 0.386 < qQ < 0.515. We remark that
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for massless scalars, we once again find that β is bounded, never reaching unity.

7.5 Charged Massive Scalars

We now focus on a BH charge satisfying 1 − Q/Qmax = 10−5, and study the effect of

adding a scalar mass to the QNM landscape. We present part of our results in Fig. 7.2

by showing the two most dominant QNMs for a selection of scalar masses. The effect

of the mass is to decrease the imaginary part of both modes. This means that massive

scalars decay faster; consequently, the larger the scalar mass, the harder it becomes for

its fluctuations to restore SCC.

The strongest effect here is in the SR modes. These are highly sensitive to the mass,

which moves the imaginary part downwards by an approximately constant shift (in the

uncharged case qQ = 0, this was justified rigorously for small µ > 0 in [168]). As a

consequence, for non-zero mass, the SR instability is no longer present for sufficiently

small charges q, but resurfaces when q exceeds some positive lower bound. We note that

the existence of unstable SR modes with non-vanishing scalar mass (which follows from

their existence in the massless case by the continuous dependence of the QNM spectrum

on all parameters) is, to the best of our knowledge, being numerically detected here for

the first time. These modes are easy to miss in view of their large sensitivity to changes

in the mass. In fact, for larger, but still very small, masses, the SR instability is no longer

present.

The NE mode is much less sensitive to the mass (the first 3 green lines in Fig. 7.2 lie

on top of each other). While it also moves down, it continues to be the case that for large

enough qQ, of order 1, and the mass range considered, β < 1/2. The limiting value of β

at large qQ seems to be independent of the mass.

Finally, notice that for the largest mass presented, (µM)2 = 10−1, the SR mode is

outside of the plotted range, and the NE mode is below Im(ω/κ−) = −1, indicating a

β > 1, found here for the first time. Note that, although it seems that the NE mode

might continue increasing its negative imaginary part with increasing scalar mass, we do

expect β to remain bounded, since at some point the PS mode will become dominant, and

this is independent of the mass at large l. Furthermore, in empty dS, β remains bounded

when Λµ2 →∞, as follows from [169].
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7.6 Conclusions

In Chapter 6 we presented evidence for the failure of SCC for highly charged RNdS BHs

under neutral scalar perturbations. This was achieved by relying on Eq. (7.2) and per-

forming a thorough numerical computation of β. Here, following a suggestion in Ref. [125],

we extend our analysis to charged (massless and massive) scalars.

To obtain a quantitative formulation of (a linearized version of) SCC we started by

showing that, by suitably extending the definition of β, Eq. (7.2) remains valid for charged

and massive scalar perturbations. We then performed a detailed numerical computation

of the dominant QNMs in RNdS, for choices of BH parameters identified as problematic

in Chapter 6, while taking into account the entire range of coupling constants qQ ≥ 0

and several choices of scalar masses. From this we can then compute β and infer about

SCC, at least in the cases where we have mode stability Im(ω0) < 0.

Our main results are plotted in Figs. 7.1 and 7.2, and our conclusions can be summa-

rized as follows:

1. For all choices of scalar mass and large enough charge coupling we get β < 1/2.

Consequently, our linear analysis suggests that SCC should be valid, in the corre-

sponding parameter ranges. This is in line with Ref. [125], but here we show that

the result also holds for small masses.

Superimposing neutral and charged scalar perturbations, the smaller of the two

values of β for the two types of perturbations (namely β|q=0 > 1/2 and β|q�1 < 1/2)

is the one relevant for SCC. Consequently the expected failure of SCC for uncharged

scalars is put into question as soon as we add a charged scalar field with sufficiently

strong coupling.

2. Nonetheless, for all choices of scalar masses we always find an interval of coupling

charges for which β > 1/2, which predicts a potential failure of SCC in this setting.

Moreover, even if we add neutral perturbations we will get β|q=0 > 1/2 and β|q 6=0 >

1/2 and the situation remains alarming for SCC.

3. Finally, for large scalar masses and small charges we get, for the first time, β > 1.

Recall that this is related to bounded curvature and therefore opens the possibility

to the existence of solutions to the Einstein–Maxwell–Klein–Gordon system with a

scalar field satisfying Price’s law and bounded curvature across the CH. 4

4Spherically symmetric solutions of the Einstein-Maxwell scalar system with bounded curvature were
constructed in Ref. [33], but these have a compactly supported scalar field along the event horizon.
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Nonetheless, this should be a non-generic feature: if we once again superimpose a

neutral scalar perturbation—as a proxy for a linearized gravitational perturbation—

we will get β|q=0 < 1, which should be enough to guarantee the blow-up of curvature.

We end with some final comments.

First, the charged matter could just as well be fermionic instead of scalar. Note that

fermions do not have a SR instability, so the entire range of fermion charge parameters

is open for the study of SCC at this linear level. In particular, it is interesting to see if

charged fermions also have the potential to restore SCC at large charge. We pursue this

study in Chapter 8.

Second, during the last stages of this work we were informed by the authors of Ref. [126]

that the SR mode, unlike the near extremal, is sensitive to the cosmological constant: for

large enough cosmological constant it appears to be absent. A quick check indicates that

our chosen value of ΛM2 = 0.06 is close to the value where the SR mode is the most

unstable (see Appendix F). 5 Hence, for different ΛM2 we expect the role of this mode to

be either similar or smaller (for Λ = 0 the instability is absent [88, 89]), and thus for it

to be equally hard or easier to find a regime where β > 1/2.

Third, one might also argue, as is done in [125], that for physical black holes made

from charged matter coming from the standard model we must have qQ� 1; hence SCC

is, according to the presented results, expected to be satisfied. We stress that even with

this input we remain in the realm of the conceptual version of SCC (as described in the

introduction of this chapter) since the input is only relevant when the conjecture is in

danger and this only happens for highly charged BHs.

Finally, in the final stage of preparation [123] appeared, where the gravitational and

electromagnetic perturbations are analyzed and found not to save SCC. In fact for these

perturbations it is found that β can exceed not just 1/2 but even 1 and 2, making the

charged matter studied here the dominant mode.

Regardless of the approach to SCC that the reader subscribes to, the results presented

here indicate at least a growing level of sophistication required for the Cosmic Censor, and

the situation regarding SCC, in the presence of a positive cosmological constant, remains

subtle!

5For 1 − Q/Qmax = qQ = 10−2 the massless superradiant mode has Im(ω)/κ− = 2.75 × 10−5 when
ΛM2 = 0.06, and obtains its maximum of Im(ω)/κ− = 3.07× 10−5 when ΛM2 = 0.0426.
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Figure 7.3: Higher l QNMs of a charged, massless scalar perturbation of a RNdS BH with

ΛM2 = 0.06 and 1−Q/Qmax = 10−5, as a function of the scalar charge q.

7.7 Higher l modes

In this section we verify the expectation that the higher l QNMs do not affect SCC. In

Fig. 7.3 we show the l = 1, 2, 3 modes. These are all modes of the NE family, since they

are present already at q = 0 and they follow their pattern. No modes of the other families

are present at this range. The dependence on q is rather mild, and in particular they do

not come near the dominant l = 0 mode.

While Fig. 7.3 shows the modes for massless scalars, we have done the same check for

the massive. Of the masses considered, the modes for (µM)2 = 10−4 and 10−3 are visually

indistinguishable from the massless ones, and for (µM)2 = 10−1 they lie just below the

ones presented.

Finally, one might worry if for even larger l the PS modes will become dominant. To

address this we have computed by WKB approximation, which is expected to become

very accurate in the large l limit, the modes at l = 100. The dominant mode that we

find for the parameters of Fig. 7.3 and qQ = 0.45 is ω/κ− = 5472 − 18.35i, which we

confirmed using [79]. Furthermore, we have checked all other values of scalar charge and

mass considered and found this value to be largely independent of those parameters.
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This is very far from the l = 0 mode, so we are convinced that throughout the

parameter space considered, l = 0 indeed gives the dominant mode.
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8

Charged Fermions and Strong

Cosmic Censorship

In Chapters 6 and 7 we demonstrated that the SCC conjecture might be violated for near-

extremally-charged BHs in dS space. Here, we extend our study to charged fermionic fields

in the exterior of RNdS spacetime. We, again, identify three families of modes; one related

to the PS, a second related to the dS horizon and a third which dominates near extremal-

ity. We show that for near-extremally-charged BHs there is a critical fermionic charge

below which SCC may potentially be violated. Surprisingly enough, as one approaches

extremality even more, violation of SCC may occur even beyond the critical fermionic

charge. The following chapter is based on [61].

8.1 Introduction

We recently demonstrated the implications of massless neutral scalar perturbations on

SCC in RNdS BH spacetimes. Three different families of modes were identified in such

spacetime; one directly related to the PS, well described by standard WKB tools, another

family whose existence and timescale is closely related to the dS horizon and a third family

which dominates for near-extremally-charged BHs. Surprisingly enough, our results show

that NE RNdS BHs might violate SCC at the linearized level, leading to a possible failure

of determinism in GR. The key quantity controlling the stability of the CH, and therefore

the fate of SCC, is given by [37]

β ≡ −Im(ω0)/κ− , (8.1)
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where ω0 is the longest-lived/dominant non-zero QNM [16, 17, 18]) and κ− is the surface

gravity of the CH. The results in [29, 30, 34] suggest that β remains the key quantity

in the non-linear setting: the higher β, the more stable the CH. Concretely, the modern

formulation of SCC requires that

β < 1/2 (8.2)

in order to guarantee the breakdown of field equations at the CH [115]. In Chapter 6,

a thorough linear numerical study of β throughout the whole parameter space of subex-

tremal RNdS spacetimes revealed that 1/2 < β < 1 in the near-extremal regime, leading

to a CH with enough regularity for extensions to be possible beyond it. This provides

evidence for the existence of CHs which, upon perturbation, are rather singular due to the

divergence of curvature invariants, but where the gravitational field can still be described

by the field equations; the evolution of gravitation beyond the CH, however, is highly non-

unique. Recent studies [62, 132] have generalized the linear massless scalar field study

in higher-dimensional RNdS BHs and RNdS BHs on the brane finding violation in the

near-extremal regime.

There are different ways to interpret the previous results. If one takes the SCC con-

jecture as a purely mathematical question about GR then this either signifies a failure

of SCC, or such phenomena are superseded by nonlinear effects. In fact, the results of

[129] proved that even nonlinear effects could not save the conjecture from failing for

near-extremally-charged BHs.

A subsequent study of metric fluctuations in RNdS BHs showed that such perturba-

tions possibly exhibit a much worse violation of SCC. In [123] it was shown that for a

sufficiently large NE RNdS BH, perturbations arising from smooth initial data can be

extended past the CH in an arbitrarily smooth way. Nevertheless, astrophysical BHs are

expected to be nearly neutral [166, 170]. Taking this into consideration, one can question

the relevance of SCC violations in highly charged, non-spinning BHs. In fact, a recent

study suggests that rapidly rotating BHs in cosmological backgrounds do not violate SCC.

According to [124], in KdS spacetime (8.1) remains unchanged, but now β seems to be

bounded exactly by 1/2, at extremal rotation. Similar results were obtained in [132] for

higher-dimensional KdS BHs.

Considering the formation of a charged BH, one would argue that charged matter

has to be present. In [125, 130], it was claimed that charged scalar fields would lead to

the restoration of SCC in an appropriate region of the parameter space of RNdS and

Kerr-Newmann-dS BHs. This implication requires working in the large-coupling regime

for which β < 1/2. Taking into account the whole parameter space, subsequent studies
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[60, 126, 127] presented numerical evidence that SCC may still be violated in the setting

of charged scalar perturbations in RNdS.

In Chapter 7, we also take into account massive charged scalar fields which lead to

strong evidence that β > 1. Recall that this is related to bounded curvature and therefore

opens the possibility to the existence of solutions to the Einstein-Maxwell-Klein-Gordon

system with a scalar field satisfying Price’s law and bounded curvature across the CH.

Nonetheless, if the neutral scalar perturbations where superimposed to the charged mas-

sive ones, then the smaller of the two types of perturbations is the one relevant for SCC,

thus getting β < 1, which should be enough to guarantee the blow-up of curvature com-

ponents.

In [127] it was shown that even for large scalar field charge there are NE BHs for

which β > 1/2. A key ingredient of the aforementioned studies was the existence of a

superradiantly unstable mode. This unstable mode was the dominant one for small scalar

charges rendering the question of the validity of SCC irrelevant for a significant region of

the parameter space.

Is it natural to question then, if the charged matter could just as well be fermionic

instead of scalar. Fermions do not superradiate, leaving the entire range of fermionic

charge open for the study of SCC at the linearized level. The results of [128] provide

evidence that fermionic perturbations of RNdS BHs might violate SCC for sufficiently

large BH charge. As a matter of fact, the family that seems to dominate the dynamics

near extremality is, mostly, the PS family with a very small participation of a family

which is purely imaginary for zero fermionic charge q and quickly becomes subdominant

as q increases.

Unfortunately, there is no information about the classification of the latter family and

if it will eventually dominate the dynamics for even higher BH charges. Moreover, since a

dS horizon is present, the dS family of modes might be present as well and even dominate

the dynamics for small cosmological constants in analogy with what was found in Chapter

6. The tool used to extract the modes in [128] is time domain analysis. Although it is

a very powerful tool for such calculations, there is a slight chance that long-lived modes

may be missed either because of their timescale being larger than the evolution time of the

system or because of improper choice of initial data which might not trigger the long-lived

modes.

In this chapter, we study the propagation of massless charged fermions on a fixed

RNdS background and extract the QNMs with a spectral method developed in [79] which

is based on numerical methods introduced in [80] (for a topical review see [171]). After
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characterizing the families of modes that are present, we will examine the implications on

SCC for NE RNdS BHs.

8.2 Charged Fermions in Reissner-Nordström-de Sit-

ter spacetime

We focus on RNdS BHs, described by the metric

ds2 = −f(r)dt2 +
dr2

f(r)
+ r2(dθ2 + sin2 θdϕ2) , (8.3)

where f(r) = 1 − 2Mr−1 + Q2r−2 − Λr2/3. Here, M, Q are the BH mass and charge,

respectively, and Λ > 0 is the cosmological constant. The surface gravity of each horizon

is then

κi =
1

2
|f ′(ri)| , i ∈ {−,+, c} , (8.4)

where r− < r+ < rc are the Cauchy, event and cosmological horizon radius. Since fermions

are described by spinors, we use the tetrad formalism to accommodate them in curved

space. The tetrads by definition satisfy the relations

e(a)
µ eν(a) = δνµ,

e(a)
µ eµ(b) = δ

(a)
(b) ,

The choice of the tetrad field determines the metric through

gµν = e(a)
µ e(b)

ν η(a)(b),

η(a)(b) = eµ(a) e
ν
(b) gµν ,

where η(a)(b) and gµν are the Minkowski and RNdS metric, respectively. In order to write

the Dirac equation, we also introduce the spacetime-dependent gamma matrices Gµ which

are related to the special relativity matrices, γ(a), by

Gµ = eµ(a)γ
(a),
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and are chosen in a proper way to satisfy the anti-commutation relations

{γ(a), γ(b)} = −2η(a)(b),

{Gµ, Gν} = −2gµν .

Consequently, we define Gµ with respect to a fixed tetrad

Gt = et(a)γ
(a) =

γt√
f(r)

, Gr = er(a)γ
(a) =

√
f(r)γr,

Gθ = eθ(a)γ
(a) = γθ, Gϕ = eϕ(a)γ

(a) = γϕ,

where γt, γr, γθ and γϕ are the γ−matrices in “polar coordinates” [172]

γt = γ(0),

γr = sin θ cosϕγ(1) + sin θ sinϕγ(2) + cos θ γ(3)

γθ =
1

r

(
cos θ cosϕγ(1) + cos θ sinϕγ(2) − sin θ γ(3)

)
,

γϕ =
1

r sin θ

(
− sinϕγ(1) + cosϕγ(2)

)
and

γ(0) =

1 0

0 −1

 , γ(k) =

 0 σk

−σk 0


the standard Dirac γ-matrices, where σk, k = 1, 2, 3 the Pauli matrices. The propagation

of a spin 1/2 particle of mass mf on a fixed RNdS background is then described by the

Dirac equation in curved spacetime [49]

(iGµDµ −mf )Ψ = 0, (8.5)

with the covariant derivative

Dµ = ∂µ − iqAµ + Γµ,

where q the charge of the Dirac particle, A = −(Q/r)dt the electrostatic potential and

Γµ the spin connection coefficients defined as

Γµ = −1

8
ω(a)(b)µ

[
γ(a), γ(b)

]
.
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The spin connection ω(a)(b)µ is defined as

ω(a)(b)µ = η(a)(c)

(
e(c)
ν e

λ
(b)Γ

ν
µλ − eλ(b)∂µe

(c)
λ

)
,

with Γνµλ the Christoffel symbols. By choosing the ansatz Ψ = f(r)−1/4r−1ψ, (8.5) can be

written as[
iγt√
f(r)

∂

∂t
+ i
√
f(r)γr

∂

∂r
− iγr

r
+ i

(
γθ

∂

∂θ
+ γϕ

∂

∂ϕ

)
− γt qQ

r
√
f(r)

−mf

]
ψ = 0. (8.6)

Since the external fields are spherically symmetric and time-independent, we can separate

out the angular and time dependence of the wave functions via spherical harmonics and

plane waves, respectively. For the Dirac wavefunctions, we choose the ansatzes

ψ+
jkω = e−iωt

φkj−1/2F
+(r)

iφkj+1/2G
+(r)

 , (8.7)

ψ−jkω = e−iωt

φkj+1/2F
−(r)

iφkj−1/2G
−(r)

 , (8.8)

where we introduced the spinor spherical harmonics [172]

φkj−1/2 =

√ j+k
2j
Y
k−1/2
j−1/2 (θ, ϕ)√

j−k
2j
Y
k+1/2
j−1/2 (θ, ϕ)

 , for j = l +
1

2
,

φkj+1/2 =

 √
j+1−k
2j+2

Y
k−1/2
j+1/2 (θ, ϕ)

−
√

j+1+k
2j+2

Y
k+1/2
j+1/2 (θ, ϕ)

 , for j = l − 1

2
,

with j = 1/2, 3/2, . . . , k = −j,−j + 1, . . . , j and Y m
l the ordinary spherical harmonics.

By substituting (8.7) and (8.8) into (8.6) and utilizing the identities

K = ~σ~L+ 1 = −rσr
(
σθ∂θ + σϕ∂ϕ

)
+ 1,

Kφkj∓1/2 = ±(j +
1

2
)φkj∓1/2,

σrφkj∓1/2 = φkj±1/2,
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with ~σ, ~L the Pauli and angular momentum vectors, respectively, and σr, σθ, σϕ the Pauli

matrices in “polar coordinates” [172], we end up with the coupled Dirac equations

∂F

∂r∗
−
ξ
√
f(r)

r
F +

(
ω − qQ

r

)
G+mf

√
f(r)G = 0, (8.9)

∂G

∂r∗
+
ξ
√
f(r)

r
G−

(
ω − qQ

r

)
F +mf

√
f(r)F = 0, (8.10)

where ξ = ±(j + 1/2) = ±1, ±2, . . . and dr∗ = f/dr. Since the charge-to-mass ratio of

the electron is of order 1011C/kg, it is reasonable to explore massless fermions. By setting

mf = 0 we can decouple (8.9), (8.10) by introducing a new coordinate

dr̄∗ =

(
1− qQ

rω

)
f

dr,

to get

dF

dr̄∗
−WF + ωG = 0, (8.11)

dG

dr̄∗
+WG− ωF = 0, (8.12)

and subsequently

d2F

dr̄2
∗

+
(
ω2 − V+

)
F = 0, (8.13)

d2G

dr̄2
∗

+
(
ω2 − V−

)
G = 0, (8.14)

with

V± = ±dW
dr̄∗

+W 2,

where

W =
ξ
√
f

r
(
1− qQ

rω

) . (8.15)

It can be shown by utilizing (8.11), (8.12) that potentials related in this manner and

subjected to Sommerfeld conditions are isospectral, thus, allowing us to work only with

the field F [17, 173]. Since we are interested in the characteristic frequencies of this

spacetime, we impose the boundary conditions

F (r → r+) ∼ e−iωr̄∗ , F (r → rc) ∼ eiωr̄∗
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which select a discrete set of frequencies ω called the QNMs. The QN frequencies are

characterized, for each ξ, by an integer n ≥ 0 labeling the mode number. The fundamental

mode n = 0 corresponds, by definition, to the non-vanishing frequency with the smallest

(in absolute value) imaginary part and will be denoted by ω 6= 0. It is apparent from

(8.11), (8.12) and (8.15) that the symmetry Re(ω) → −Re(ω), q → −q, ξ → −ξ holds,

enabling us to only study positive ξ.
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Figure 8.1: Lowest lying fermionic QNMs for ξ = 1, q = 0 and ΛM2 = 0.06 as a function

of Q/M . The right plot shows the imaginary part, with dashed red lines corresponding

to purely imaginary modes, and solid blue lines to complex PS modes, whose real part is

shown in the left plot. The red circles in the right plot designate the ξ = 1 Dirac modes of

empty dS space at the same Λ, which closely match the first imaginary mode shown here,

but lie less close to the higher overtone. Near extremality, another set of purely imaginary

modes (dotted green lines) come in from −∞ and approach 0 in this limit. Only a finite

number of modes are shown, even though we expect infinitely many near-extremal modes

in the range shown.

As shown in Appendix E, for q 6= 0 the stability of the CH continues to be determined

by (8.1). The results shown in the following sections were obtained with the Mathematica

package of [79], and checked in various cases with a WKB approximation [150] and with

a code developed based on the matrix method [73].
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8.3 QNMs of massless, charged fermionic fields: the

three families

In the previous chapters, we found three qualitatively different families of QNMs: the

PS, dS and NE family. The first two connect smoothly to the modes of asymptotically

flat Schwarzschild and of empty dS, respectively, while the last family cannot be found in

either of these spacetimes. Here we, again, distinguish three families of modes.

8.3.1 Photon sphere modes

The photon sphere is a spherical trapping region of space where gravity is strong enough

that photons are forced to travel in unstable circular orbits around a BH. This region

has a strong pull in the control of decay of perturbations and the QNMs with large

frequencies. For asymptotically dS BHs, we find a family that can be traced back to the

photon sphere and refer to them as PS modes. These modes are shown with blue colors

in Figs. 8.1-8.2 and 8.4. They satisfy the symmetry Re(ω)→ −Re(ω) for q = 0 and the

symmetry breaks as the fermionic charge is turned on, according to (8.15). For very small

Λ, q and Q, ξ → ∞ defines the dominant mode which can be very well approximated

by a WKB approximation and asymptote to the Schwarzschild BH Dirac QNMs [174].

The lowest lying PS modes are weekly dependent on the BH charge as it is apparent for

the case presented in Fig. 8.1. For sufficiently large Λ the former does not hold. For

large BH charges the ξ = 1 PS modes dominate the family (see Section 8.6). As the BH

“disappears” (M → 0) we observe that the PS family has increasingly large frequencies

and timescales until they abruptly vanish (see Section 8.7).

It is important to note that at the eikonal limit the fermionic PS QNMs coincide with

the scalar ones. This occurs since at the this limit the effective potentials for fermionic

and scalar perturbations are dominated by the angular numbers ξ, l thus gaining a similar

form. A basic difference between scalar and fermionic perturbations is that the eikonal

scalar QNMs are the dominant ones for all BH parameters, in contrast with the eikonal

fermionic QNMs which are dominant for a very small region of the BH parameter space.

8.3.2 de Sitter modes

In pure dS space solutions of the Dirac equation with purely imaginary ω exist [175]

ωpure dS/κ
dS
c = −i

(
ξ + n+

1

2

)
(8.16)
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where ξ = 1, 2, . . . . The second family of modes we find are the Dirac BH dS QNMs, which

are deformations of pure dS QNMs (8.16). The dominant BH dS mode (ξ = 1, n = 0) has

almost identical imaginary part with (8.16) and higher overtones have increasingly larger

deformations.

These modes have weak dependence on the BH charge and are described by the surface

gravity κdS
c =

√
Λ/3 of the cosmological horizon of pure dS space, as opposed to that of

the cosmological horizon in the RNdS BH in study. This could be explained by the fact

that the accelerated expansion of RNdS spacetimes is also governed by κdS
c [157, 158].

To the best of our knowledge, this family of Dirac BH dS modes has been identified

here for the first time. The scalar equivalent of these modes has been identified for the first

time in the QNM calculations of [59, 79]. Moreover, as the black hole vanishes (M → 0),

these modes converge smoothly to the exact pure dS modes (8.16) (see Section 8.7).

A key similarity of fermionic dS QNMs and scalar dS QNMs is the fact that they are

both proportional to the surface gravity of the cosmological horizon of pure dS space.

On the other hand, the fermionic dS QNMs do not admit an ω = 0 mode, while scalars

do. Such mode has been seen in time evolutions [88, 89] and rises from the fact that the

effective potential forms a potential well right outside the photon sphere, serving as a

trapping region. This region is connected to a superradiant instability in RNdS against

charged scalar fluctuations which effectively puts the validity of SCC out of discussion

since the internal and external regions of the BH in study are effectively unstable. The

effective potential of fermionic perturbations does not contain any potential wells which

is a key indication of the inexistence of superradiance (together with the Pauli exclusion

principle).

8.3.3 Near-extremal modes

In the limit where the Cauchy and event horizon approach each other, a third NE family

dominates the dynamics. In the extremal limit and for sufficiently small fermionic charges

this family approaches

ωNE ≈
qQ

r−
− iκ−

(
ξ + n+

1

2

)
≈ qQ

r+

− iκ+

(
ξ + n+

1

2

)
, (8.17)

where ξ = 1, 2, . . . , with weak dependence on Λ as shown by our numerics. As indicated

by (8.17), the dominant mode of this family is the ξ = 1, n = 0. In the asymptotically

flat case, such modes have been identified in [176]. Here, we show that these modes exist

in RNdS BHs, and that they are the limit of a new family of modes.
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Comparing the NE family of modes (8.17) to the one discussed in Chapter 6, but

initially found in [160] for RN BHs, we realize that their real parts coincide, since they

only depend on the choice of BH parameters, but their imaginary parts differ slightly.

In any case, as the extremal charge is approached, both families share the same fate; a

vanishing imaginary part (κ− = κ+ = 0 at extremality).

8.4 Dominant modes and Strong Cosmic Censorship
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Figure 8.2: Lowest lying QNMs of a charged, massless fermionic perturbation of a RNdS

BH with ξ = 1, ΛM2 = 0.005, 0.06 and 1 − Q/Qmax = 10−3, 10−4, 10−5 as a function of

the fermionic charge qM . The modes denoted with blue, red and green colors belong to

the PS, dS and NE family, respectively.

Since our purpose is to investigate the implications of charged fermions in SCC, we will

restrict ourselves to choices of NE RNdS BH parameters which are problematic, since in

this region κ− becomes comparable to the Im(ω) of the dominant QNM. For the region

of interest, ξ = 1 modes dominate all three families (see Section 8.6).

In [128] it was shown that for the choice of ΛM2 = 0.06 and Q/Qmax = 0.996 only

the ξ = 1 PS mode is relevant for SCC and there is a region in the parameter space

where β > 1/2 (for qM / 0.53) implying the potential violation of SCC. Interesting

enough, there was no participation of the NE modes to the determination of β for these

parameters. On the other hand, for ΛM2 = 0.06 and Q/Qmax = 0.999 a family that

originates from purely imaginary modes (for q = 0) comes into play to dominate for very

small fermionic charges and quickly becomes subdominant to give its turn to the ξ = 1

PS mode. Again, β > 1/2 (for qM / 0.85) so SCC may be violated.
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Our numerics completely agree with this picture. Here, we will be mostly interested in

the case of even higher BH charges and the classification of the families originating from

purely imaginary modes. To do so, we will study various choices of Λ. The BH charges

we consider are:

1−Q/Qmax = 10−3, 10−4, 10−5. (8.18)

According to our results (see Fig. 8.2) for small BHs (ΛM2 = 0.005) with 1−Q/Qmax =

10−3 we see that β is defined by the dS mode up to qM ≈ 0.5; for larger q the PS mode

becomes dominant. Interestingly enough, for qM < 0.5, the NE mode lies very close to

the dS one being the first subdominant mode in this range. For larger BHs (ΛM2 = 0.06)

with 1 − Q/Qmax = 10−3 the dS mode moves rapidly to the subdominant side, giving

its place to the NE mode to dominate up until qM ≈ 0.35; for larger q the PS mode

dominates again. For BHs with 1 − Q/Qmax ≥ 10−4 the NE mode always dominate the

dynamics, while the rest of the families lie out of the range of interest.

For all cases presented, there is always a critical fermionic charge qc above which

β < 1/2 and SCC is preserved. In Fig. 8.3 (left panel) we display the dependence of

qcM on the ΛM2 and Q/Qmax. We observe that as the BH becomes extremal a larger

violation gap occurs in the parameter space. A larger qcM is also obtained for smaller

cosmological constants. Similar results were obtained in [60, 126] for the case of charged

scalar perturbations, although the absence of superradiance effect in fermionic fields leads

to even larger regimes in the parameter space where violation of SCC may occur.

By observing the cases with 1−Q/Qmax = 10−5 we see that above qc, β lies very close

to 1/2. To examine if non-perturbative effects are present we plot β for ΛM2 = 0.005, 0.06

and 1−Q/Qmax = 10−8 versus the fermionic charge. In Fig. 8.3 (right panel) we observe

the existence of arbitrarily small oscillations of the imaginary part of the fundamental NE

mode in highly near-extremal RNdS BHs. Such a phenomenon was previously observed

for charged scalar perturbations in RNdS [127] and gravitational perturbations in Kerr

BHs [177]. These oscillations have been named “wiggles” recently, and have very small

amplitude. They are suppressed exponentially fast with increasing q and are precisely

the non-perturbative effect that an asymptotic series, such as the WKB approximation,

can easily miss, since they are highly subdominant. We believe that these wiggles were

missed from the analysis of [128] because they did not consider highly NE BHs.

The ramifications of the existence of wiggles are fierce for SCC. Our results indicate

that, even for fermionic fields with q > qc, there are still NE BHs for which β > 1/2 and

SCC may be violated, regardless of the cosmological constant, in contrast with the results

in [128]. Finally, notice that for all cases presented, all dominant modes originate below
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Im(ω/κ−) = −1, indicating that β > 1, corresponding to a potential scenario of bounded

curvature as explained in Chapter 6.
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Figure 8.3: Left: Dependence of the critical fermionic charge qc on the BH charge Q/Qmax

and the cosmological constant ΛM2. Here, different colors denote different choices of

cosmological constants. Right: Dominant ξ = 1 NE QNMs of a charged, massless

fermionic perturbation of a RNdS BH with ΛM2 = 0.005 (red line) and ΛM2 = 0.06

(green line) for 1−Q/Qmax = 10−8 as a function of the fermionic charge qM .

8.5 Conclusions

We have presented evidence in the previous chapters for the potential failure of SCC in

NE RNdS BHs under neutral and charged scalar perturbations. By utilizing (8.1) we

performed thorough numerical analyses of β through the calculation of QNMs of the

system. Here, we extend our analysis to charged fermionic fields.

First, we provide justification that (8.1) remains valid for charged fermionic pertur-

bations. Then, we perform a detailed numerical computation of the dominant modes of

RNdS BHs and distinguish three families of QNMs. The first family is closely related

to the PS of the BH while the second is related to the existence and timescale of the

dS horizon of pure dS space. The final family dominates the dynamics when NE BH

charges are considered. According to our study, the only relevant region for SCC is the

NE, where the surface gravity of the CH, κ−, becomes comparable with the decay rates of

the dominant QNMs. We show that all families admit their dominant modes for ξ = 1 in

this region and search for potential violation, while taking into account the entire range

of qM ≥ 0. Finally, by computing β we consider the implications on SCC.
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Figure 8.4: Lowest lying QNMs of a charged, massless fermionic perturbation of a RNdS

BH for various ξ with ΛM2 = 0.06 and 1−Q/Qmax = 10−3 as a function of the fermionic

charge qM . The modes denoted with blue and green colors belong to the PS and NE

family, respectively. The dS family is absent in this range.

Our main results are shown in Figs. 8.1 - 8.3 and our conclusions are summarized here.

For all choices of ΛM2 we always find a region of fermionic charges for which β > 1/2

which predicts a potential failure of SCC, since the CH can be seen as singular due to the

blow-up of curvature but maintain enough regularity for metric extensions to be possible

beyond it. For sufficiently large fermionic charges the conjecture seems to be initially

restored for highly charged RNdS BHs. After examining BHs even closer to extremality,

we realize that even beyond the critical fermionic charge, violation can still occur due to

the existence of wiggles.

We point out that for all cases presented, all dominant modes from the dS, PS or NE

family admit β > 1 for a small but significant regime of fermionic charges. This result

is even more alarming for SCC since it is related to bounded curvature and therefore

opens the possibility to the existence of solutions with even higher regularity across the

CH. Nevertheless, if we superimpose all perturbations, then the smallest of all types of

perturbations is the one relevant for SCC. Thus, the neutral scalar modes admit 1/2 <
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β < 1, which is enough to guarantee the blow-up of curvature invariants at the CH.
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Figure 8.5: Fundamental (left, dashed) and first overtone (right, dashed) ξ = 1 BH dS

QNM of a neutral, massless fermionic perturbation propagating on a fixed RNdS BH with

Λ = 0.005 and Q = 10−4 as a function of the BH mass M . The red circles in each plot

designate the respective pure dS QNMs.

8.6 Higher ξ modes

In this section we verify the expectation that the higher ξ QNMs do not affect SCC. In Fig.

8.4 we show the ξ = 1, 2, 3 modes. The ones depicted with blue colors belong to the PS

family, since they originate from complex modes for q = 0 and follow their pattern. The

ones depicted with green colors belong to the NE family, since they originate from purely

imaginary modes for q = 0 and follow their pattern. The dS modes are not present in the

range of interest since they are too subdominant for the chosen cosmological constant.

We clearly see that the modes defining β according to (8.1) will be the ξ = 1 QNMs. The

same holds for other choices of Λ.

For completeness, in Table 8.1 we show various modes from different families with

ξ = 1, 10 for various choices of Q, q and Λ. We compare the neutral ξ = 10 PS modes

with a WKB approximation for arbitrarily large ξ and verify that indeed the imaginary

parts lie very close. It is apparent that for NE charges ξ = 1 modes always dominate. It

is also apparent that the only way for ξ → ∞ modes to be the dominant ones of the PS

family is for very small cosmological constants. Specifically, for ΛM2 = 0.001, ξ → ∞
modes are dominant up to a critical BH charge Qc/M ≈ 0.866. Above Qc/M , ξ = 1

modes dominate the PS family. E.g. for Q/M = 0.865 and q = 0 the dominant (ξ →∞)

PS mode admits Im(ωPS)/κ− = −0.0479, while the dominant (ξ = 1) dS mode admits
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Im(ωdS)/κ− = −0.0135; the NE family is too subdominant for this BH charge. None

of those modes can potentially violate SCC so it becomes a necessity to search closer

to extremality, where we are aware that κ− becomes comparable to Im(ω).1 Since β is

maximal at q = 0, any qM > 0 will make Im(ω)/κ− even smaller. Finally, for larger Λ,

Qc decreases, moving even further away from extremality.

Considering the above, we are convinced that throughout the parameter space in study,

ξ = 1 indeed gives the dominant modes for all families.

Q/M = 10−1

ΛM2 = 0.005

ξ qM = 0 qM = 0.1

1 ωPS= 0.1795 - 0.0947 i ωPS= -0.1760 - 0.0941 i

ωdS= -0.0614 i ωdS= -0.00003 - 0.0614 i

10 ωPS= 1.8831 - 0.0941 i ωPS= -1.8797 - 0.0940 i

WKB - 0.0941 i -

ΛM2 = 0.06

ξ qM = 0 qM = 0.1

1 ωPS= 0.1280 - 0.0650 i ωPS= -0.1247 - 0.0647 i

ωdS= -0.2170 i ωdS= -0.0003 - 0.2170 i

10 ωPS= 1.3097 - 0.0654 i ωPS= -1.3064 - 0.0654 i

WKB - 0.0654 i -

Q/Qmax = 1− 10−3

ΛM2 = 0.005

ξ qM = 0 qM = 0.1

ωPS=0.2353 - 0.0865 i ωPS=-0.1875 - 0.0852 i

1 ωdS=-0.0613 i ωdS=-0.0003 - 0.0612 i

ωNE=-0.0671 i ωNE=0.1004 - 0.0669 i

10 ωPS=2.4650 - 0.0872 i ωPS=-2.4152 - 0.0872 i

WKB - 0.0870 i -

ΛM2 = 0.06

ξ qM = 0 qM = 0.1

1 ωPS=0.2016 - 0.0708 i ωPS=0.2548 - 0.0692 i

ωNE=-0.0611 i ωNE=0.0974 - 0.0609 i

10 ωPS=2.0918 - 0.0716 i ωPS=2.1436 - 0.0715 i

WKB - 0.0718 i -

Table 8.1: Lowest lying fermionic QNMs of RNdS BH for various Q, q, Λ and ξ.

8.7 Convergence of the families

In this section we demonstrate the convergence of the BH dS modes to the pure dS QNMs,

as well as the behavior of the PS modes, for vanishing M . In Fig. 8.5 we plot with dashed

lines the fundamental (n = 0) and first overtone (n = 1) BH dS modes and illustrate that

as the BH disappears (M → 0) the QNMs tend smoothly to the exact pure dS fermionic

QNMs which are denoted with red circles. Here, we only demonstrate this for a specific

choice of parameters but our numerics reveal that the smooth convergence happens for

all BH parameters. We realize that the increment of the BH mass affects weakly the dS

family. It is important to note that equivalent results for the BH dS family were obtained

in RNdS under scalar perturbations.

The story is different for the PS family of modes (see Fig. 8.6). As M → 0 the real

and imaginary parts diverge. This occurs due to the shrinking of the photon sphere. If

1For the case presented, the surface gravity is ∼ 100 larger than the decay rate of the dominant mode.
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we consider, for example, a perturbed string with a specific length that vibrates, then by

continuously decreasing its length we will observe that the vibrations will have increasingly

higher frequency and smaller timescales until the point where the string vanishes and

oscillations cease to exist. The same occurs for a the BH in study as it “disappears”.
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Figure 8.6: Real (left) and imaginary (right) part of the ξ = 10 fundamental and first

overtone PS QNM of a neutral, massless fermionic perturbation propagating on a fixed

RNdS BH with Λ = 0.06 and Q = 10−4 as a function of the BH mass M . The real parts

coincide in the range shown.
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9

Strong Cosmic Censorship in

higher-dimensional

Reissner-Nordström-de Sitter

spacetime

In the previous chapters we have demonstrated that SCC may be violated for near-

extremally-charged black holes in 4-dimensional de Sitter space under scalar and fermionic

perturbations. Here, we extend the study of neutral massless scalar perturbations in

higher dimensions and discuss the dimensional influence on the validity of SCC hypothesis.

By giving an elaborate description of neutral massless scalar perturbations of RNdS BHs

in d = 4, 5 and 6 dimensions we conclude that SCC is violated near extremality. The

following chapter is based on [62].

9.1 Introduction

It is well known that the would-be CH in asymptotically flat BHs is a singular boundary

[23, 24, 98]. The remnant fields of gravitational collapse exhibit an inverse power-law

decay behavior in the exterior of asymptotically flat BHs [52, 53], and will be amplified

when propagating along the CH due to the exponential blueshift effect occurring there.

The gravitational collapse of matter fields cannot lead to stable enough CHs, leading

to the preservation of the deterministic power of physical laws and the SCC hypothesis,

proposed by Penrose [25].

However, for dS BH spacetimes, due to the change of the boundary conditions, remnant
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perturbation fields outside dS BHs decay exponentially instead of polynomially [29, 30].

The extendibility of the metric at the CH depends delicately on the competition between

the exponential decay outside the BH and the exponential blueshift amplification along

the CH. In such a scenario, the decay of perturbations could be fast enough such that the

CH singularity can be so weak that the spacetime metric will be extendible beyond it as

a weak solution to the Einstein field equations [115], meaning that SCC may be violated!

Mathematically, it was proven [37] that SCC will not be respected under massless neutral

scalar perturbations if the following condition is satisfied

β ≡ −Im(ω)

κ−
>

1

2
, (9.1)

where κ− is the surface gravity of the CH and Im(ω) is the imaginary part of the lowest-

lying/dominant QNM of the perturbation in the external region of the BH.

In particular, for NE RNdS BHs, it has been shown in Chapter 6 that neutral massless

scalar perturbations are extendible past the CH, since the blueshift amplification along

the CH is dwarfed by the exponential decay outside of the dS BH. Such a violation of SCC

becomes even more severe in the case of the coupled electromagnetic and gravitational

perturbations [123].

Later on, it was shown that the violation of SCC can be alleviated by considering a

sufficiently charged scalar field on the exterior of RNdS BHs [60, 125, 126, 127], although

there was still a region in the parameter space where SCC may be violated (see Chapter

7). Similar results have been obtained for Dirac field perturbations [128] (see Chapter 8).

On the other hand, the nonlinear evolution of massive neutral scalar fields in RNdS space

revealed that SCC might not be saved by such nonlinear effects [129]. In addition, by

investigating SCC in lukewarm RNdS and Martnez-Troncoso-Zanelli (MTZ) BH space-

times, under non-minimally coupled massive scalar perturbations, it was demonstrated

that the validity of the hypothesis depends on the characteristics of the scalar field [131].

Besides charged BHs, SCC has been examined in KdS BH backgrounds and interestingly

enough no violation was found for linear scalar and gravitational perturbations [124].

All available studies of SCC in RNdS BH backgrounds are limited in 4 dimensions

even though it has been found that in higher dimensions, physics becomes richer [178].

In contrast to the 4−dimensional results, various instabilities have been found in higher-

dimensional spacetimes. In a wide class of d ≥ 4 configurations, such as black strings and

black branes, the Gregory-Laflamme instability against linear perturbations was discussed

in [179, 180]. For higher-dimensional BHs in the Einstein-Gauss-Bonnet theory, it was
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found that instabilities occur for large angular quantum numbers l, while the lowest

lying QNMs of the first few angular quantum numbers were found stable [181, 182]. In

particular, numerical investigations have uncovered the surprising result that RNdS BH

backgrounds are unstable for d ≥ 7, if the values of black hole mass and charge are large

enough [84], followed by the analytic confirmation of [85]. Moreover, it was argued that

the Weak Cosmic Censorship hypothesis could be restored easier in higher dimensions

[183] by examining the gravitational collapse of spherically symmetric generalized Vaidya

spacetimes. It is, thus, of great interest to generalize the discussion of SCC to higher-

dimensional RNdS BHs and explore whether and how they affect the validity of the

conjecture.

9.2 Scalar fields in higher-dimensional RNdS space-

time

The d−dimensional RNdS spacetime is described by the metric

ds2 = −f(r)dt2 +
1

f(r)
dr2 + r2dΩ2

d−2, (9.2)

where

f(r) = 1− m

rd−3
+

q2

r2(d−3)
− 2Λ

(d− 2)(d− 1)
r2, (9.3)

and

Λ =
(d− 2)(d− 1)

2L2
, dΩ2

d−2 = dχ2
2 +

d−2∑
i=2

(
i∏

j=2

sin2 χj

)
dχ2

i+1, (9.4)

in which q and m are related to the electric charge Q and the ADM mass M of the BH,

and L is the cosmological radius. M and Q are expressed as

M =
d− 2

16π
ωd−2m, Q =

√
2(d− 2)(d− 3)

8π
ωd−2q, ωd =

2π
d+1
2

Γ(d+1
2

)
, (9.5)

with ωd being the volume of the unit d-sphere. The causal structure of a subextremal

d−dimensional BH described by (9.3) admits three distinct horizons, where r− < r+ <

rc are the Cauchy, event and cosmological horizon radius, respectively. We denote the

extremal electric charge of the BH as Qmax at which the CH and event horizon coincide.
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The maximal cosmological constant is denoted as Λmax for each dimension,1 meaning

that if Λ > Λmax holds then the spacetime would admit at most one horizon with positive

radius, thus rendering our discussion irrelevant. To ensure the existence of three distinct

horizons, the cosmological constant must be restricted to Λ < Λmax. The surface gravity

of each horizon is then

κi =
1

2
|f ′(ri)| , i ∈ {−,+, c}. (9.6)

The propagation of a neutral massless scalar field Ψ on a fixed d−dimensional RNdS

background is described by the Klein-Gordon equation. By expanding our field in terms

of spherical harmonics

Ψ ∼
∑
lm

e−iωt
ψ(r)

r
d−2
2

Ylm(χ), (9.7)

we end up with the master equation

d2ψ

dr2
∗

+ (ω2 − V )ψ = 0, (9.8)

where

V = f(r)

(
l(d+ l − 3)

r2
+

(d− 2)f ′(r)

2r
+
f(r)(d− 4)(d− 2)

4r2

)
, (9.9)

and dr∗ = dr/f(r) the tortoise coordinate. By imposing the boundary conditions

ψ(r → r+) ∼ e−iωr∗ , ψ(r → rc) ∼ eiωr∗ , (9.10)

we select a discrete set of QN frequencies called QNMs. Due to the similarity of char-

acteristics of (9.9) and the effective potential for odd (Regge-Wheeler [184]) and even

(Zerilli [185, 186]) gravitational perturbations, the study of massless neutral scalar fields

propagating on spherically symmetric backgrounds is a good proxy for more physically

relevant gravitational field perturbations.

As shown in Appendix D, for d ≥ 4 the stability of the CH continues to be determined

by (9.1). The results shown in the following sections were obtained with the Mathematica

package of [79], the asymptotic iteration method (AIM) [187, 188], and checked in various

cases with a WKB approximation [150] and with a code developed based on the matrix

method [73].

1e.g. for d = 4, Λmax = 2/9, for d = 5, Λmax = 3π/4 and for d = 6, Λmax =
(
648π2/25

) 1
3 provided

that the black hole mass is set to M = 1.
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9.3 Dominant families of modes in higher-dimensional

RNdS spacetime

According to Chapter 6, the region of interest in 4−dimensional RNdS, where violation

of SCC may occur, lies close to extremality. There, the decay rate of perturbations

in the exterior becomes comparable with the surface gravity of the CH κ− leading to

β > 1/2. Motivated by the aforementioned study, we scan the parameter space of higher-

dimensional RNdS spacetimes for near-extremal parameters. By applying our numerics

in the region of interest we discover three distinct families of modes.

The photon sphere is a spherical trapping region of space where gravity is strong

enough that photons are forced to travel in unstable circular orbits around a BH. This

region has a strong pull in the control of decay of perturbations and the QNMs with large

frequencies. For instance, the decay timescale is related to the instability timescale of

null geodesics near the photon sphere. For asymptotically dS BHs, we find a family that

can be traced back to the photon sphere and refer to them as PS modes. The dominant

modes of this family are approached in the eikonal limit, where l →∞, and can be very

well approximated with the WKB method (see Section 9.6). For vanishing Λ, Q they

asymptote to the Schwarzschild BH QNMs in d ≥ 4 dimensions. We find that l = 10

provides a good approximation of the imaginary parts of the dominant modes which we

depict in our plots with solid blue lines.

Our second family of modes, the BH dS family, corresponds to purely imaginary

modes which can be very well approximated by the pure d-dimensional scalar dS QNMs

[154, 155, 156]:

ωpure dS/κ
dS
c = −i(l + 2n), (9.11)

ωpure dS/κ
dS
c = −i(l + 2n+ d− 1). (9.12)

The dominant mode of this family (n = 0, l = 1) is almost identical to (9.11) which we

denote in our figures with red dashed lines. These modes are intriguing, in the sense that

they have a surprisingly weak dependence on the BH charge and seem to be described

by the surface gravity of d-dimensional dS κdS
c =

√
2Λ/(d− 2)(d− 1) of the cosmological

horizon of pure d-dimensional dS space, as opposed to that of the cosmological horizon in

the RNdS BH under consideration.

Finally, as the CH approaches the event horizon, a new family of modes appears to

dominate the dynamics. In the extremal limit of a d-dimensional RNdS BH the dominant
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(n = l = 0) mode of this family approaches (see Section 9.7)

ωNE = −iκ− = −iκ+, (9.13)

where κ−, κ+ the surface gravity of the Cauchy and event horizon in d-dimensional RNdS

spacetime. We call this family the NE family of modes. Higher angular numbers l

admit larger (in absolute value) imaginary parts, thus rendered subdominant. In the

asymptotically flat case, these modes seem to have been described analytically in the

eikonal limit [189].

9.4 Strong Cosmic Censorship in higher-dimensional

RNdS spacetime

In Fig. 9.1 we depict the dominant modes of each of the previous families versus κ−. We

have chosen d = 4, 5, and 6-dimensional near-extremal RNdS BHs with various Λ/Λmax.

It is evident that for sufficiently “small” BHs2 (very small Λ/Λmax), the increment of

dimensions fortifies SCC for a larger region of the parameter space of Q/Qmax. On the

other hand, for sufficiently “large” BHs (large Λ/Λmax), the increment of dimensions

work against the validity of SCC admitting violations for smaller Q/Qmax. To deepen

into the understanding of this complex situation we denote the degree of difficulty of SCC

violation with d4 for d = 4, d5 for d = 5 and d6 for d = 6. For example, for the case of

Λ/Λmax = 0.05, the degree of difficulty of SCC violation follows d6 > d5 > d4, meaning

that 6-dimensional RNdS BHs require the highest BH charge to be violated. The second

hardest BH to be violated is the 5-dimensional and, finally, the easiest to be violated is

the 4-dimensional.

In the “intermediate” region, where Λ/Λmax is neither too small nor too large, the

picture becomes obscured by the delicate interplay of the QNMs of the dominant PS and

dS family. To that end, we have depicted two interesting cases. In the first case, for

Λ/Λmax = 0.15, the degree of difficulty to violate SCC follows d6 > d4 > d5, while in

the second case for Λ/Λmax = 0.25 we have d4 > d6 > d5. This perplex picture appears

due to the opposite behavior that the dominant PS and dS family possess. As shown

2Usually we use r+/rc to measure the size of “small/large” BHs, but in our discussion we compare
BHs in different dimensions by fixing Λ/Λmax which has some connection with the size of BHs. It turns
out that the value of r+/rc would be notably influenced by Q/Qmax. On the other hand, if Q/Qmax is
fixed, one can find that the difference between rc and r+ would increase with the decrease of Λ/Λmax. For
these reasons, the “small/large” BHs in this chapter are only referred to BHs with small/large Λ/Λmax.
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in Fig. 9.1, higher dimensions oblige βPS, as it gets determined by the dominant modes

of the PS family (l = 10), to move upwards in the plots, thus becoming subdominant,

while βdS, as it gets determined by the dominant modes of the dS family (l = 1), moves

downwards. On the other hand, the increment of Λ/Λmax has the opposite effect on these

families as expected by the results demonstrated in Chapter 6. It is easy to realize (see

the pattern in Fig. 9.1) that the inclusion of even higher than 6 dimensions will make

the picture of “intermediate” and “large” BHs even richer and much more perplex3. The

only solid case is the one for “small” BHs. There, β is essentially (for the largest part

of the parameter space) determined by the dominant modes of the dS family which will

become even more dominant for increasing dimensions if no new families or instabilities

occur in d > 6 dimensions.4

parameter regions degree of difficulty of SCC violation

I. Λ/Λmax & 0.279 d4 > d5 > d6

II. 0.179 . Λ/Λmax . 0.279 d4 > d6 > d5

III. 0.135 . Λ/Λmax . 0.179 d6 > d4 > d5

IV. Λ/Λmax . 0.135 d6 > d5 > d4

Table 9.1: Comparison of Λ/Λmax with respect to the degree of difficulty of SCC violation

in d = 4, 5 and 6−dimensional RNdS BHs.

To distinguish between “small”, “intermediate” and “large” BHs, we scan thoroughly

the parameter space of d = 4, 5 and 6−dimensional RNdS BHs to find critical values of

Λ/Λmax where different violation configurations are introduced. We find 3 critical values

which divide the range of 0 < Λ/Λmax ≤ 1 into 4 regions. In Table 9.1, we summarize

the division of our parameter space into the regions of interest and display the degree

of difficulty of SCC violation at each region. We realize that region I corresponds to

“large” BHs, regions II and III correspond to “intermediate” BHs and, finally, region IV

corresponds to “small” BHs. These regions can be directly seen in Fig. 9.1 and arise due

to the existence and competition between the dominant PS and dS family, as discussed

3E.g. for Λ/Λmax = 0.4 we can see that if d = 7 or 8 where to be included, then the dS family would
eventually dominate for such dimensions, thus changing the picture into a richer version of Λ/Λmax = 0.15
or 0.25.

4It is natural to question whether more slowly decaying modes might appear in the dimensions con-
sidered. For this purpose, we have used calculations of very high accuracy to rule out the possibility of
lost dominant modes. This means that, if more families do exist, they should be subdominant thus are
irrelevant for SCC.
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above.

In any case, we clearly see that β > 1/2 above some value of the BH charge, no

matter the choice of the cosmological constant. This leads to CHs which upon scalar

perturbations maintain enough regularity for the scalar field (and thus the metric) to be

extendible past it, resulting to a potential violation of SCC. Moreover, if it was up to the

PS and dS family, β would always diverge at extremality. However, the dominant modes

of the NE family (l = n = 0) will always take over to keep β below 1.

9.5 Conclusions and Discussions

The study of [37] indicate that the stability of the CH in asymptotically dS spacetimes

is governed by β defined in (9.1). Subsequently, the results of Chapter 6 indicate a

potential failure of determinism in GR when near-extremal 4−dimensional RNdS BHs

are considered. Under massless neutral scalar perturbations, the CH might seem singular,

due to the blow-up of curvature components, but maintain enough regularity as to allow

the field equations to be extended beyond a region where the evolution of gravitation is

classically determined in a highly non-unique manner.

Here, we extend the study to higher-dimensional RNdS BHs and find that the same

picture occurs when scalar fields are considered. We have proven that (9.1) remains

unchanged for d−dimensions. By inferring to d = 4, 5 and 6−dimensional RNdS BHs we

realize that the introduction of higher dimensions will fortify SCC for sufficiently “small”

BHs (Λ/Λmax . 0.135), by the introduction of higher BH charges beyond which β > 1/2.

Moreover, we observe that “intermediate” and “large” BHs (Λ/Λmax & 0.135) possess a

much more complex picture with some dimensions being preferred over others to fortify

SCC. This perplexity arises due to the delicate competition of the PS and dS family of

modes. Even though for “large” BHs we see that the preferred dimension to fortify SCC,

with higher Q/Qmax beyond which β > 1/2, is d = 4, we understand that the introduction

of even higher than 6 dimensions will eventually change the picture due to the behavior

of the dS family demonstrated in Fig. 9.1, if no instabilities occur in our region of interest

[84].

In any case, we can always find a region in the parameter space of the higher-

dimensional RNdS BHs in study for which β exceeds 1/2, but still not exceeding unity5.

5β > 1 would correspond to extensions of the scalar field in C1 at the CH, thus the coupling to gravity
should lead to the existence of solutions with bounded curvature.



9. Strong Cosmic Censorship in higher-dimensional Reissner-Nordström-de
Sitter spacetime 107

0.9947 0.998 1

0.5

1

1.5

-
Im

(ω
)/
κ
-

d=4

Λ/Λmax = 0.05

0.9966 0.9989 1

d=5

Λ/Λmax = 0.05

0.9976 0.9993 1

d=6

Λ/Λmax = 0.05

0.9915 0.9966 1

0.5

1

1.5

-
Im

(ω
)/
κ
-

Λ/Λmax = 0.15

0.9905 0.9964 1

Λ/Λmax = 0.15

0.993 0.9975 1

Λ/Λmax = 0.15

0.9919 0.9967 1

0.5

1

1.5

-
Im

(ω
)/
κ
-

Λ/Λmax = 0.25

0.9864 0.9945 1

Λ/Λmax = 0.25

0.9881 0.9955 1

Λ/Λmax = 0.25

0.9927 0.9969 1

0.5

1

1.5

-
Im

(ω
)/
κ
-

Λ/Λmax = 0.4

0.9872 0.9948 1

Λ/Λmax = 0.4

0.9843 0.9936 1

Λ/Λmax = 0.4

0.9964 0.9981 1

0.5

1

1.5

Q/Qmax

-
Im

(ω
)/
κ
-

Λ/Λmax = 0.8

0.9921 0.9963 1
Q/Qmax

Λ/Λmax = 0.8

0.989 0.9951 1
Q/Qmax

Λ/Λmax = 0.8

Figure 9.1: Dominant modes of different families, showing the (nearly) dominant complex

PS mode (blue, solid) at l = 10, the dominant BH dS mode (red, dashed) at l = 1

and the dominant NE mode (green, dashed) at l = 0 for d = 4, 5 and 6-dimensional

RNdS spacetime with M = 1. The two dashed vertical lines designate the points where

β = −Im(ω)/κ− = 1/2 and where the NE mode becomes dominant. The dS family in the

final row of plots is too subdominant, thus lying outside of the region of interest.



108 9.6. WKB approximation of the dominant photon-sphere modes

This still leaves as with CHs which upon perturbations might seem singular, due to

the blow-up of curvature components, but that doesn’t imply the breakdown of Einstein’s

field equations [100] nor the destruction of macroscopic observers [101] at the CH.

It is important to mention that SCC in higher-dimensional RNdS spacetime was also

discussed in [132], with a wishful premise that the large l mode always dominates, i.e., the

value of β always decreases monotonously with the increase of angular number l. However,

this is not the case, as we have seen in Fig. 9.1, due to the existence of three different

families of modes. In fact, the existence of more families highly affects β according to the

choice of our cosmological constant. This led to an updated version of [132] which was

published recently. In the new version, their improved results are in agreement with ours.

9.6 WKB approximation of the dominant photon-

sphere modes

The WKB method can provide accurate approximation of QNMs in the eikonal limit.

The QNMs of BHs in the eikonal limit under massless scalar perturbations are related to

the Lyapunov exponent λ of the null unstable geodesic, which is inversely-proportional

to the instability timescale associated with the geodesic motion of null particles near the

photon sphere. For d−dimensions we have [63]

ωWKB = l

√
f(rs)

r2
s

− i
(
n+

1

2

)√
−1

2

r2
s

f(rs)

(
d2

dr2
∗

f(r)

r2

)
rs

= Ωcl − i
(
n+

1

2

)
|λ| ,

(9.14)

where rs is the radius of the null circular geodesic, and Ωc the coordinate angular velocity

of the geodesic. By focusing on the modes with overtone number n = 0, we have β =

|λ| /2κ− for the dominant PS modes at the eikonal limit.

In Table 9.2, we compare the value of β obtained by AIM and the spectral method

[79] at l = 10 and the value evaluated by the WKB method at large l for the same

BH parameters. We observe that the difference between βWKB, βspectral and βAIM is very

small, meaning that the choice of l = 10 in our numerics can be regarded as a good

approximation of βWKB of the dominant PS modes at the large l limit.
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βPS d = 4 d = 5 d = 6

βWKB (l→∞) 0.328192 0.687518 0.775677

βAIM (l = 10) 0.328304 0.689089 0.778164

βspectral (l = 10) 0.328304 0.689089 0.778164

Table 9.2: Comparison of βPS obtained with WKB, AIM and a spectral method for a

RNdS BH with M = 1/(3
√

2), Λ = 3 and Q/Qmax = 0.992.

9.7 Approximation of the dominant near-extremal

modes

In [160] it has been proven that long-lived modes (or quasi-bound states) can be supported

by a 4−dimensional NE RN BH. In Chapter 6 it was realized that this family of modes

exist in NE RNdS BHs and is weakly dependent on the choice of Λ. Particularly, for

neutral massless scalar fields, these modes can be very well approximated as

ωd=4,NE = −i(l + n+ 1)κ− = −i(l + n+ 1)κ+ (9.15)

when r− = r+. Motivated by this result, we realize that for any dimension the dominant

NE modes should be approximated by Eq. (9.13). For the sake of proving the validity

of our approximate results, in Table 9.3 we show various dominant NE modes extracted

from our spectral code versus the approximate Eq. (9.13). Higher overtones and angular

numbers are not approximated by (9.13) anymore, but in any case, they are subdominant,

thus they do not play any role for SCC.

βNE d = 4 d = 5 d = 6

βapprox 1 1 1

βspectral (l = n = 0) 0.996 0.997 0.999

Table 9.3: Comparison of βapprox derived from (9.13) versus βspectral obtained with a

spectral method for a d-dimensional RNdS BH with M = 1, Λ = 0.1 and Q/Qmax =

0.999999.
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10

Instability of higher-dimensional de

Sitter black holes

BHs possess trapping regions which lead to intriguing dynamical effects. By properly

scattering test fields off a BH, one can extract energy, leading to a dynamical instability

called superradiance. Here, we study the superradiance effect of an electrically-charged

BH immersed in a d−dimensional dS Universe under charged scalar fluctuations. By

performing a thorough spectral analysis of charged scalar perturbations on d−dimensional

RNdS BHs we compute the unstable quasinormal resonances and link their nature with

a novel family of QNMs associated with the existence and timescale of the cosmological

horizon of pure dS space. Our results indicate that the instability has a superradiant

nature, is enhanced in higher dimensions and occurs for a larger region of the parameter

space, for both massless and massive, charged scalar perturbations. This chapter is based

on [90].

10.1 Introduction

The study of linear perturbations has a long history in GR. A perturbative analysis of BH

spacetimes was pioneered by Regge and Wheeler [184], and has proven crucial in several

contexts, ranging from astro-physics to high-energy physics [3, 16, 17, 19]. The stability

analysis of BH spacetimes, an understanding of ringdown signals in the post-merger phase

of a binary coalescence and their use in tests of GR, or even the analysis of fundamental

light fields in the vicinities of BHs are some noteworthy examples where BH perturbation

theory plays an important role [16, 17, 19].

Perturbing a BH with small fluctuations could lead to two possible outcomes; the BH
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is stable under perturbations, due to damping mechanisms that act on the BH exterior,

and will relax after the initial disruption or the BH is unstable under perturbations and

will inevitably disappear or evolve to another stable object. Although astrophysical BHs

are expected to be stable under small fluctuations, a lot of concern has been given to BH

solutions that might be prone to instabilities due to new phenomena that might be possibly

unveiled. Quite strikingly, one can extract energy from BHs through scattering techniques

[21, 22] by properly probing them with test fields, and under certain circumstances the

test fields can grow in time. This effect is called superradiance [20] and was explored

in the context of rotating and charged BHs [190, 191, 192, 193, 194, 195, 196, 197, 198,

199, 200, 201, 202, 203, 204, 205, 206, 207, 208], stars [209, 210, 211] and other compact

objects [212].

Perturbation theory has revealed that BHs vibrate in a well described manner, exhibit-

ing a discrete spectrum of preferable oscillatory modes, called QNMs [213, 214, 16, 17, 18].

Linear perturbation theory has been an active field of study for many decades which

uncovered various methods of testing the modal stability of compact objects, at the

linearized level, both analytically and numerically. Various studies have brought to

light spacetimes which upon perturbations become unstable(for an incomplete list see

[215, 84, 216, 217, 88, 89, 80, 85, 86, 218, 219, 220, 221, 222, 223, 224, 225, 226]).

An interesting study [84] suggests that higher-dimensional RNdS spacetimes are prone

to instabilities under gravitational perturbations. Such a gravitational instability has been

further examined in [85, 86, 87]. Specifically, d−dimensional RNdS BHs with d > 6 and

large enough mass and charge, are unstable under gravitational perturbations. Why

only d = 4, 5 and 6−dimensional RNdS BHs are favorable as to the BH stability, is still

unknown.

More recently, a new instability was found in 4−dimensional RNdS BHs [88, 89]. The

l = 0 charged scalar perturbation was proven to be unstable for various regions of the

parameter space of RNdS BHs. The addition of an arbitrarily small amount of mass

acts as a stabilization factor, as well as the increment of the scalar field charge beyond a

critical value. Furthermore, the modes were proven to be superradiant.

In this chapter, we investigate such an instability in higher-dimensions by employing

a frequency-domain analysis. We analyze both massless and massive charged scalar per-

turbations in subextremal d−dimensional RNdS spacetime and show that the instability

still persists. For simplicity, we narrow down our study in d = 4, 5 and 6 dimensions.

Intriguingly, we will show that the instability originates from a new family of QNMs

that arise only in asymptotically dS BHs and can be very well approximated by the scalar
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QNMs of pure d−dimensional dS space. This novel family was very recently identified

in RNdS for both scalar (see Chapter 6) and fermionic perturbations (see Chapter 8).

Finally, we will demonstrate that as the spacetime dimensions increase, the instability is

amplified, occurs for a larger region of the subextremal parameter space and still satisfies

the superradiant condition.

10.2 Charged scalar fields in higher-dimensional RNdS

The purpose of our work is to explore massless and massive charged scalar fields in the

full range of their charge and mass on d−dimensional RNdS backgrounds, specifically the

modes that are prone to instabilities. The d−dimensional RNdS spacetime is described

by the metric

ds2 = −f(r)dt2 +
1

f(r)
dr2 + r2dΩ2

d−2, (10.1)

with

dΩ2
d−2 = dχ2

2 +
d−2∑
i=2

(
i∏

j=2

sin2 χj

)
dχ2

i+1.

The metric function reads

f(r) = 1− m

rd−3
+

q0

r2(d−3)
− 2Λr2

(d− 2)(d− 1)
, (10.2)

where Λ is the cosmological constant and m, q0 are functions related to the ADM mass

M and electric charge Q of the BH, respectively,

M =
d− 2

16π
wd−2m, Q =

√
2(d− 2)(d− 3)

8π
wd−2q0, (10.3)

with wd = 2π
d+1
2 /Γ(d+1

2
), the volume of the unit d−sphere. The causal structure of a

subextremal higher-dimensional RNdS BH possesses three distinct horizons, namely the

Cauchy r = r−, event r = r+ and cosmological horizon r = rc, where r− < r+ < rc. The

associated electromagnetic potential sourced by such charged spacetime is

A = −

√
d− 2

2(d− 3)

q0

rd−3
dt. (10.4)
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The propagation of a massive charged scalar field on a fixed d−dimensional RNdS back-

ground is governed by the Klein-Gordon equation

(DνDν − µ2)Ψ = 0, (10.5)

where Dν = ∇ν − iqAν is the covariant derivative and µ, q are the mass and charge of the

field, respectively. By expanding Ψ in terms of spherical harmonics with harmonic time

dependence,

Ψ =
∑
lm

ψlm(r)

r
d−2
2

Ylm(χ)e−iωt, (10.6)

and dropping the subscripts on the radial functions, we obtain the master equation

d2ψ

dr2
∗

+
[
ω2 − 2ωΦ(r)− V (r)

]
ψ = 0 , (10.7)

where

Φ(r) =
q0q√

2(d−3)
d−2

rd−3

, (10.8)

is the electrostatic potential, dr∗ = dr/f(r) the tortoise coordinate and

V (r) = f(r)

(
µ2 +

l(l + d− 3)

r2
+

(d− 2)f ′(r)

2r
+ f(r)

(d− 4)(d− 2)

4r2

)
− Φ(r)2, (10.9)

where l is an angular number, corresponding to the eigenvalue of the spherical harmonics,

and prime denotes the derivative with respect to the radial coordinate r. We are interested

in the characteristic QNMs ω of such spacetime, obtained by imposing the boundary

conditions [17]

ψ ∼


e−i(ω−Φ(r+))r∗ , r → r+,

e+i(ω−Φ(rc))r∗ , r → rc.

(10.10)

The QN frequencies are characterized, for each l, by an integer n ≥ 0 labeling the mode

number. The fundamental mode n = 0 corresponds, by definition, to the non-vanishing

frequency with the smallest (by absolute value) imaginary part.

The results shown in the following sections were obtained mostly with the Mathematica

package of [79] (based on methods developed in [80]), and checked in various cases with

a WKB approximation [150] and a spectral code that was developed based on a non-grid

based interpolation scheme [73].
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Figure 10.1: Imaginary part of a charged massless scalar perturbation with l = 0 on a

fixed d−dimensional RNdS BH with M = 1, Q = 0.5 (top panel) and Q = 0.999Qmax

(bottom panel) versus the charge coupling qQ. Different colors designate distinct choices

of cosmological constants Λ.

10.3 Superradiance in higher-dimensional RNdS

The superradiant effect of charged massive scalar fields around 4−dimensional RNdS

spacetime has been analyzed in [88, 89]. The study can be easily generalized in d−dimensions.

For this analysis, we consider a wave-packet scattering off the BH effective potential. Such

a scenario demands that we impose the following boundary conditions in (10.7):

ψ ∼


Be−i(ω−Φ(r+))r∗ , r → r+,

e−i(ω−Φ(rc))r∗ + Aei(ω−Φ(rc))r∗ , r → rc.

(10.11)

In fact, (10.7) has a complex conjugate solution ψ†. It is easy to prove that the Wronskian

of the independent solutions ψ, ψ† is r∗−independent and therefore, conserved. Due to the

conservation of the Wronskian, we derive the following relation associating the reflexion

(A) and transmission (B) coefficients

|A|2 = 1− ω − Φ(r+)

ω − Φ(rc)
|B|2. (10.12)
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Hence, superradiance occurs when

Φ(rc) < ω < Φ(r+), (10.13)

which designates that the amplitude of the reflected wave is larger than the amplitude of

the incident wave. In [89] it was proven that the real part of ω satisfying (10.13) is the

necessary, but not sufficient, condition for the instability. Thus, the instability can only

take place when (10.13) is satisfied, but on the other hand, (10.13) can also be satisfied

by stable modes. As we will see below, the same holds for higher-dimensional RNdS

spacetimes. This result is qualitatively different compared to the higher-dimensional

asymptotically anti-de Sitter BHs, where the necessary condition is also the sufficient one

[227, 228].

10.4 Massless charged scalar fields

In this section, we focus on the dominant unstable modes of charged massless scalar fields

in d−dimensional RNdS. The dominant modes will be the ones that control the dynamical

evolution of the perturbation at late times, thus defining the end-state of the perturbation.

As shown in [88, 89] the only unstable modes occur for l = 0. Both [88, 89] focus mostly

on time evolutions of the perturbation. Although the onset of such an instability has

been linked with a non-vanishing cosmological constant in 4−dimensions, its origin was

recently unraveled initially in Chapter 7 and later discussed analytically (for qQ � 1)

and numerically in [127]. It was recently shown that a new distinct family of QNMs arise

in the presence of a positive Λ when considering neutral scalar perturbations around a

4−dimensional (see Chapter 6) and higher-dimensional (see Chapter 9) RNdS BH. This

family of modes is purely imaginary, it directly relates to the existence and timescale of

the cosmological horizon, and can be very well approximated by the scalar QNMs of pure

d−dimensional de Sitter space [155]:

ωpure dS/κ
dS
c = −i(l + 2n) , (10.14)

ωpure dS/κ
dS
c = −i(l + 2n+ d− 1) . (10.15)
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Figure 10.2: Effective potentials of the l = 0 massless charged scalar perturbation on

a d−dimensional RNdS BH with M = 1 and Q = 0.5 for various charge couplings qQ.

The cosmological constants used, from left to right, are Λ = 0.005, Λ = 0.25 and Λ = 1,

respectively.

Interestingly, these modes depend on the surface gravity of the cosmological horizon

of pure d−dimensional de Sitter space κdS
c =

√
2Λ/(d− 2)(d− 1) as opposed to that of

the cosmological horizon in the d−dimensional RNdS BH under consideration. This can,

in principle, be explained by the fact that the accelerated expansion of RNdS spacetimes

is also governed by κdS
c [157, 158]. It is evident from (10.14) that the dominant l = 0

mode is a stationary mode ω = 0 which does not depend on the dimensions d. This mode

is responsible for the dynamical instability found in [88, 89] when the scalar charge is

turned on.

Here, we identify the existence of the zero (prone to instability) mode with the ex-

istence of a cosmological bound in the BH spacetime, which directly links to the QNMs

of pure dS space. As shown in Fig. 10.1, for qQ 6= 0 the zero modes evolves to QNMs

with positive imaginary parts, thus unstable. As we increase the charge coupling, the

instability is saturated and the family acquires a negative imaginary part, thus stability is

restored. The stabilization due to the increment of the charge coupling can be explained

through the form of the effective potential.

In Fig. 10.2, we plot the effective potentials V (r) for d = 4, 5, 6 dimensions, for various

charge couplings qQ. The 4−dimensional picture of [88] remains the same in higher di-

mensions. By increasing qQ, (10.9) acquires a potential well close to the light ring which

serves as a trapping region for waves to be captured and possibly be amplified. More

increment of qQ leads to a purely negative effective potential where the potential well

vanishes. It is observed that with the increment of dimensions, though, the effective po-

tential requires larger charge couplings to become purely negative. This can be explained

by the fact that (10.9) becomes more positive by the increment of dimensions. This leads

to the amplification of the instability as d increases, as well as the enlargement of the



120 10.5. Massive charged scalar fields

parameter space region where the instability occurs. It is important to state that for

l 6= 0 the potential well vanishes, therefore no instabilities are found.

The real part of the unstable modes increases monotonously with respect to qQ (see

Table 10.1). The imaginary part decreases more rapidly for larger Λ and smaller Q.

A peak of instability seems to occur for every Λ. It is evident that as we approach

extremality, the peak of instability is slightly increased.

Interestingly enough, it has been shown [88, 89] that all charged massless scalar modes

in 4-dimensional RNdS fit the superradiant condition (10.13). In Table 10.1 we show

that l = 0 perturbations in d−dimensional RNdS with arbitrarily small or large charge

couplings, also fit the superradiant condition, even when the perturbations are decaying

(Im(ω) < 0).

10.5 Massive charged scalar fields

In this section, we perform a frequency domain analysis of the l = 0 massive charged scalar

perturbations in d−dimensional RNdS BHs and explore the superradiant instability as

the scalar mass µ increases. The addition of a nonzero mass affects the unstable modes in

a manner shown in Fig. 10.3. The Im(ω) shift downwards as mass increases which leads

to increasingly smaller regions of qQ where unstable modes exist. In fact, the “unstable”

l = 0 family will initially originate from stable purely imaginary modes for qQ = 0. After

a finite µ, perturbations become stable for all qQ. This is due to the upwards shift of

(10.9) as µ increases which eliminates the potential well formed for µ = 0.

From Fig. 10.3 we realize that two critical charge couplings exist, qQc(min) beyond

which linear instabilities arise and qQc(max) beyond which stability is restored for d =

4, 5, 6. As expected, qQc(min) = 0 and qQc(max) is maximized for µ = 0. With the

increment of scalar mass qQc(min) increases and qQc(max) decreases until a finite mass

where they coincide. Beyond that point they both vanish.

Curiously enough, unstable QNMs with nonzero mass exist in various regions of the

parameter space and, even more strikingly, they still satisfy (10.13). In Table 10.2 we

show that the addition of a mass term can still lead to unstable and, more surprisingly,

stable modes which are superradiant. More increment of µ leads to the cancellation of

superradiance for 4 and higher dimensions. This can be explained by the fact that the

gravitational attraction between the massive field and the BH becomes dominant for large

enough µ if one compares it with the electric repulsion between the BH and scalar field

charges qQ.
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Figure 10.3: Imaginary part of a charged massive scalar perturbation with l = 0 on a

fixed d−dimensional RNdS BH with M = 1, Q = 0.5 versus the charge coupling qQ.

Different colors designate distinct choices of scalar masses µ. The cosmological constants

used, from left to right, are Λ = 0.005, Λ = 0.25 and Λ = 1, respectively.

d = 4

Λ = 0.005

qQ ω Φ(rc) Φ(r+)

0.005 0.00023 + 3.7×10−7i 0.00021 0.00266

0.05 0.00229 + 0.00004 i 0.00213 0.02663

0.5 0.02577 + 0.00159 i 0.02134 0.26625

1 0.05322 - 0.00271 i 0.04268 0.53251

5 0.21907 - 0.01736 i 0.21338 2.66253

10 0.42966 - 0.01832 i 0.42677 5.32507

Λ = 0.05

qQ ω Φ(rc) Φ(r+)

0.005 0.00092 - 3.2×10−7i 0.00077 0.00249

0.05 0.00925 - 0.00003 i 0.00773 0.02486

0.5 0.09222 - 0.00430 i 0.07734 0.24859

1 0.17777 - 0.01595 i 0.15468 0.49719

5 0.78240 - 0.04099 i 0.77338 2.48594

10 1.55129 - 0.04204 I 1.54676 4.97188

d = 5

Λ = 0.25

qQ ω Φ(rc) Φ(r+)

0.05 0.00081 + 2×10−6 i 0.00069 0.01900

0.5 0.00818 + 0.00020 i 0.00688 0.18998

1 0.01656 + 0.00073 i 0.01377 0.37996

5 0.09344 + 0.00040 i 0.06884 1.89978

10 0.18206 - 0.01759 i 0.13768 3.79956

15 0.25790 - 0.03625 i 0.20651 5.69934

Λ = 0.75

qQ ω Φ(rc) Φ(r+)

0.05 0.00293 - 4× 10−7 i 0.002260 0.01735

0.5 0.02945 - 0.00006 i 0.02260 0.17353

1 0.05922 - 0.00042 i 0.04521 0.34707

5 0.28945 - 0.03062 i 0.22604 1.73533

10 0.52736 - 0.07913 i 0.45208 3.47066

15 0.74441 - 0.10774 i 0.67812 5.20598

d = 6

Λ = 1

qQ ω Φ(rc) Φ(r+)

0.05 0.00032 + 4×10−7 i 0.00026 0.01630

0.5 0.00321 + 0.00004 i 0.00258 0.16297

1 0.00644 + 0.00015 i 0.00515 0.32594

5 0.03428 + 0.00222 i 0.02576 1.62972

10 0.07291 + 0.00245 i 0.05152 3.25944

20 0.14819 - 0.00775 i 0.10304 6.51887

Λ = 2

qQ ω Φ(rc) Φ(r+)

0.05 0.00103 + 5× 10−7 i 0.00076 0.01505

0.5 0.01028 + 0.00005 i 0.00764 0.15054

1 0.02062 - 0.00018 i 0.01527 0.30108

5 0.10765 - 0.00084 i 0.07635 1.50539

10 0.21518 - 0.01597 i 0.15271 3.01079

20 0.40031 - 0.06012 i 0.30541 6.02159

Table 10.1: Dominant l = 0 massless charged scalar modes of d−dimensional RNdS

spacetime with M = 1, Q = 0.5 for various parameters. All modes shown satisfy the

superradiant condition (10.13).

10.6 Conclusions

In the present chapter, we study a dynamical instability emerging from a spherically

symmetric l = 0 charged scalar perturbation propagating on a higher-dimensional RNdS

background. Such an instability has a superradiant nature, therefore electromagnetic

energy can be extracted from the BH.

By performing a thorough frequency domain analysis of higher-dimensional RNdS

BHs under charged scalar perturbations we realize that the source of instability is di-

rectly linked with the existence of the cosmological horizon, as well as the QNMs of pure
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d−dimensional de Sitter space. As the potential barrier close to the event horizon vi-

brates when we probe it, leaking out energy in a particular manner, so the cosmological

horizon fluctuates. These new “oscillations” of course have a distinct nature, comparing

to any other QN oscillatory mode. They originate from purely imaginary modes, very

well approximated by the pure de Sitter space QNMs and even exhibit a stationary mode

ω = 0 for any dimension with vanishing angular momentum.

d = 4,Λ = 0.005, qQ = 0.45

µ ω Φ(rc) Φ(r+)

10−3 0.02305 + 0.00173 i 0.01919 0.42925

10−2 0.02280 + 0.00107 i 0.01919 0.42925

3× 10−2 0.02054 - 0.00458 i 0.01919 0.42925

5× 10−2 0.01263 - 0.01796 i 0.01919 0.42925

d = 5,Λ = 0.25, qQ = 3

µ ω Φ(rc) Φ(r+)

10−3 0.05381 + 0.00293 i 0.04130 1.13987

10−2 0.05379 + 0.00282 i 0.04130 1.13987

10−1 0.05093 - 0.00819 i 0.04130 1.13987

2× 10−1 0.04100 - 0.04427 i 0.04130 1.13987

d = 6,Λ = 1, qQ = 7

µ ω Φ(rc) Φ(r+)

10−3 0.04949 + 0.00286 i 0.03606 2.28161

10−2 0.04948 + 0.00280 i 0.03606 2.28161

2× 10−1 0.04496 - 0.02141 i 0.03606 2.28161

4× 10−1 0.03005 - 0.10116 i 0.03606 2.28161

Table 10.2: Dominant l = 0 massive charged scalar modes of d−dimensional RNdS space-

time with M = 1, Q = 0.5 for various parameters.

When charge is introduced to the scalar field, the zero-mode evolves to a complex QNM

with positive imaginary part and monotonously increasing real part. For a finite region

of the charge coupling qQ the family remains unstable which leads to a growing profile

of the perturbation with respect to time. Such modes satisfy the superradiant condition

even when stable configurations occur. We demonstrate that the source of superradiantly

amplified modes occurs for spherically symmetric charged scalar perturbations due to the

formation of a potential well between the photon sphere and the cosmological horizon of
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the BH, for a finite range of qQ. Increasing qQ leads to the vanishing of the potential

well and the dissipation of the superradiant instability.

With the increment of dimensions, the potential well deepens and therefore, the in-

stability timescale is decreased leading to larger regions in the parameter space where

unstable modes occur. Interestingly, even though the introduction of mass stabilized the

system, there are still regions in the parameter space where the dominant modes remain

superradiantly unstable.

An open, and still interesting, problem is the nonlinear development of such a system

to grasp the end-state of the evolving BH spacetime. A huge challenge in such nonlin-

ear evolutions is the very large timescale of the instability which requires highly precise

numerical developments. Since the increment of dimensions decreases the timescale of

the instability, it would be more feasible for such an instability to be tested in higher-

dimensional RNdS spacetime non-linearly and realize if it leads to a novel scalarized BH

or to the evacuation of all matter.
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Appendix A

Scalar perturbations in spherically

symmetric spacetimes

For the following calculation, the Christoffel symbols of spherically symmetric spacetimes

of the form

ds2 = −f(r)dt2 +
1

f(r)
dr2 + r2(dθ2 + sin2 θ dϕ2) (A.1)

or, equivalently, in matrix form

gµν = diag

(
−f(r),

1

f(r)
, r2, r2 sin2 θ

)
, (A.2)

should be known. Below, we include the nonzero components in Schwarzschild-like coor-

dinates:

Γ0
10 = Γ0

01 =
f ′(r)

2f(r)
, Γ1

00 =
f(r)f ′(r)

2
, Γ1

11 = − f
′(r)

2f(r)

Γ1
22 = −rf(r), Γ1

33 = −rf(r) sin2 θ, Γ2
21 = Γ2

12 =
1

r
, (A.3)

Γ2
33 = − cos θ sin θ Γ3

31 = Γ3
13 =

1

r
, Γ3

32 = Γ3
23 =

cos θ

sin θ
.

The propagation of a charged scalar perturbation Ψ with mass and charge µ and q,

respectively, is described by the Klein-Gordon equation

(DνDν − µ2)Ψ = 0 (A.4)

where Dν = ∇ν − iqAν the covariant derivative associated with the gauge transformation

∇ν → ∇ν − iqAν . Here, Aν = −δ0
νQ/r, is the electrostatic potential originating from a
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source with charge Q. By expanding the covariant derivatives, (A.4) reads

∇ν (∇νΨ)− iq∇ν (AνΨ)− iqAν∇νΨ− q2AνAνΨ− µ2Ψ = 0 (A.5)

By utilizing (A.3) and the following identities

∇νΨ = ∂νΨ,

∇νAν = gµν∇µgκνA
κ = δµκ∇µA

κ = ∇µA
µ = ∂µA

µ + ΓµµνA
ν = 0

Aν∂
ν = gµνA

µgκν∂κ = Aµ∂κδ
κ
µ = Aµ∂µ

∇ν (AνΨ) = Ψ∇νAν + Aν∇νΨ = Aν∂
νΨ = Aµ∂µΨ

∇ν (∇νΨ) = gµν∇µ (∂νΨ) =
1√
−g

∂µ
(
gµν
√
−g ∂νΨ

)
(A.5) becomes

1√
−g

∂µ
(
gµν
√
−g ∂νΨ

)
− 2iqAν∂νΨ− q2gµνAµAνΨ− µ2Ψ = 0⇔

−∂
2
t

f
Ψ +

1

r2
∂r
(
fr2∂rΨ

)
+

1

r2

(
1

sin θ
∂θ (sin θ∂θΨ) +

1

sin2 θ
∂2
ϕΨ

)
−2iqQ

fr
∂tΨ +

q2Q2

r2f
Ψ− µ2Ψ = 0 (A.6)

By assuming that the scalar field can be expanded in temporal, radial and angular parts

Ψ ∼ e−iωtYlm(θ, ϕ)
ψ(r)

r
, (A.7)

and by utilizing the identity of the square of the orbital angular momentum operator

L2Ylm = −
(

1

sin θ
∂θ (sin θ∂θ) +

1

sin2 θ
∂2
ϕ

)
Ylm = l(l + 1)Ylm, (A.8)

(A.6) becomes

ω2ψ + f 2d
2ψ

dr2
+ ff ′

dψ

dr
−
(
ff ′

r
+ f

l(l + 1)

r2

)
ψ +

q2Q2

r2
ψ − 2qQ

r
ωψ − fµ2ψ = 0. (A.9)

If we consider the tortoise coordinate dr∗ = dr/f then we can write (A.9) in a Schrödinger-

like form
d2ψ

dr2
∗

+
(
(ω − Φ(r))2 − V

)
ψ = 0, (A.10)
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where Φ(r) = qQ/r and

V = f

(
l(l + 1)

r2
+
f ′

r
+ µ2

)
, (A.11)

the effective potential. Eq. (A.10) holds for any spherically symmetric four-dimensional

spacetime in Schwarzschild-like coordinates.
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Appendix B

Fermionic perturbations in

spherically symmetric spacetimes

Fermion fields are described by spinors ψ, and in order to accommodate spinors in general

relativity we need the tetrad formalism. A tetrad is a set of four linearly independent

vectors that can be defined at each point in a (pseudo-)Riemannian spacetime. The

tetrads by definition satisfy the relations

e(a)
µ eν(a) = δνµ, (B.1)

e(a)
µ eµ(b) = δ

(a)
(b) , (B.2)

The choice of the tetrad field determines the metric through

gµν = e(a)
µ e(b)

ν η(a)(b), (B.3)

η(a)(b) = eµ(a) e
ν
(b) gµν , (B.4)

where η(a)(b) and gµν are the Minkowski and curved spacetime metric, respectively. We

have the following rules for raising and lowering indices

e(a)µ = gµν e
ν
(a), (B.5)

e(a)
µ = η(a)(b)e(b)µ, (B.6)

where latin letters in parentheses are raised and lowered by the flat metric while the Greek

letters are raised and lowered by the curved metric. The components of tensors in the
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tetrad frame are given by the following relations

V (a) = e(a)
µ V µ, (B.7)

T
(a)
(b) = e(a)

µ eν(b)T
µ
ν , (B.8)

and so on.

In order to write the Dirac equation in GR, we also need to introduce the spacetime

dependent gamma matrices Gµ. The Gµ matrices are related to the special relativity

matrices, γ(a), by the relation

Gµ = eµ(a)γ
(a), (B.9)

and are chosen in a way so they satisfy the anti-commutation relations

{γ(a), γ(b)} = ε2η(a)(b), (B.10)

{Gµ, Gν} = ε2gµν , (B.11)

where ε = 1 for metric signature (+,−,−,−) and ε = −1 for (−,+,+,+). If the metric

is diagonal then Gµ anti-commute for µ 6= ν.

B.0.1 Dirac equation in Schwarschild-like coordinates

For a spherically symmetric four-dimensional spacetime we have the line element

ds2 = −f(r)dt2 +
1

f(r)
dr2 + r2(dθ2 + sin2 θ dϕ2) (B.12)

or in matrix form

gµν = diag

(
−f(r),

1

f(r)
, r2, r2 sin2 θ

)
, (B.13)

while the flat Minkowski metric is

η(a)(b) = diag(−1, 1, 1, 1). (B.14)

We can satisfy the anti-commutation relations (B.10) by choosing the standard Dirac

representation of γ−matrices

γ(0) =

1 0

0 −1

 , γ(k) =

 0 σk

−σk 0

 (B.15)
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where σk the Pauli matrices

σ1 =

0 1

1 0

 , σ2 =

0 −i

i 0

 , σ3 =

1 0

0 −1

 . (B.16)

It is easy to verify that (
γ(0)
)2

= 1,
(
γ(k)
)2

= −1. (B.17)

For the anti-commutations relations (B.11) to be satisfied we can define the curved γ-

matrices Gµ with respect to a fixed (Cartesian) tetrad

et(a) =

(
1√
f(r)

, 0, 0, 0

)
er(a) =

(
0,
√
f(r) sin θ cosφ,

√
f(r) sin θ sinφ,

√
f(r) cos θ

)
eθ(a) =

(
0,

1

r
cos θ cosφ,

1

r
cos θ sinφ,−sin θ

r

)
eφ(a) =

(
0,− sinφ

r sin θ
,

cosφ

r sin θ
, 0

)
(B.18)

to be

Gt = et(a)γ
(a) =

γt√
f(r)

, Gr = er(a)γ
(a) =

√
f(r)γr, (B.19)

Gθ = eθ(a)γ
(a) = γθ, Gϕ = eϕ(a)γ

(a) = γϕ, (B.20)

where γt, γr, γθ and γϕ are the γ−matrices in “polar coordinates”1

γt = γ(0), (B.21)

γr = sin θ cosϕγ(1) + sin θ sinϕγ(2) + cos θ γ(3) (B.22)

γθ =
1

r

(
cos θ cosϕγ(1) + cos θ sinϕγ(2) − sin θ γ(3)

)
, (B.23)

γϕ =
1

r sin θ

(
− sinϕγ(1) + cosϕγ(2)

)
. (B.24)

1Since the original γ−matrices are expressed in Cartesian coordinates with respect to the flat
Minkowski spacetime, we must express them into spherical coordinates by the relation γµ = ~γµ̂, where
µ̂ = r̂, θ̂, ϕ̂, ~γ = γ(1)x̂ + γ(2)ŷ + γ(3)ẑ, and also take into account the normalization factors that come
up from the anti-commutation relation {γµ, γν} = ε2gµν where gµν the inverse metric tensor of the flat
Minkowski space in spherical coordinates gµν = diag

(
−1, 1, r2, r2 sin2 θ

)
.
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It is easy to verify that

(
γt
)2

= 1, (γr)2 = −1,
(
γθ
)2

= − 1

r2
, (γϕ)2 = − 1

r2 sin2 θ
. (B.25)

To consider fluctuations of a spin 1/2 particle of mass mf we utilize the Dirac equation

in curved spacetime [49]

(iGµDµ −mf )Ψ = (iγ(a)eµ(a)Dµ −mf )Ψ = 0, (B.26)

with the covariant derivative

Dµ = ∂µ − iqAµ + Γµ, (B.27)

where q the charge of the Dirac particle, A = −(Q/r)dt the electromagnetic potential

sourced by a charge Q, and Γµ the spin connection coefficients defined as [39, 229]

Γµ =
ε

4
ω(a)(b)µγ

(a)γ(b) =
ε

8
ω(a)(b)µ

[
γ(a), γ(b)

]
. (B.28)

The spin connection ω(a)(b)µ is defined as [39, 229]

ω(a)(b)µ = η(a)(c)ω
(c)

(b)µ (B.29)

= η(a)(c)

(
e(c)
ν e

λ
(b)Γ

ν
µλ − eλ(b)∂µe

(c)
λ

)
(B.30)

with eλ(b), e
(c)
ν defined by (B.18) and the inverse of (B.18), respectively, and Γνµλ the

Christoffel symbols of (B.12). Using ε = −1 and (B.14), (B.28), (B.29) we obtain the

following spin connection coefficients

Γ0 =
f ′(r)

4
γ(0)γr, Γ1 = 0,

Γ2 =
1

2

(√
f(r)− 1

)
rγrγθ, Γ3 =

1

2

(√
f(r)− 1

)
r sin2 θγrγϕ,

where

γrγθ =
1

r

(
cosϕγ(3)γ(1) + sinϕγ(3)γ(2)

)
, (B.31)

γrγϕ =
1

r sin θ

(
cos θ sinϕγ(1)γ(3) + cos θ cosϕγ(3)γ(2) + sin θ γ(1)γ(2)

)
. (B.32)
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Plugging in all the above into the Dirac equation (B.26) we get

i
γt√
f

∂Ψ

∂t
+ iγθ

∂Ψ

∂θ
+ iγϕ

∂Ψ

∂ϕ
+ iγr

√f(r)
∂

∂r
+

√
f(r)− 1

r
+

(√
f(r)

)′
2

Ψ

+
γt√
f
qAtΨ−mΨ = 0. (B.33)

By choosing the ansatz Ψ → f−1/4r−1ψ, and utilizing Aµ, (B.33) can be written in a

simpler form

i√
f
γt
∂

∂t
ψ + i

√
fγr

∂

∂r
ψ − i

r
γrψ + i

(
γθ

∂

∂θ
+ γϕ

∂

∂ϕ

)
ψ − γt qQ

r
√
f
ψ −mfψ = 0. (B.34)

B.0.2 Separation of the angular and time dependence

Since the external fields are spherically symmetric and time-independent, we can separate

out the angular and time dependence of the wave functions via spherical harmonics and

plane waves, respectively. We start by defining the angular momentum operator together

with a compilation of some formulas:

~L = −i
(
~r × ~∇

)
, (B.35)

L± = Lx ± iLy, (B.36)

L2 = −∆S2 = L+L− + L2
z − Lz = L−L+L

2
z + Lz, (B.37)

where ∆S2 the Laplacian in spherical coordinates. The spherical harmonics Y k
l , l =

0, 1, . . . , k = −l, . . . , l form a basis for square integrable functions over S2, that is every

square integrable function over S2 can be expressed as a linear combination of spherical

harmonics. They are simultaneous eigenfunctions of L2 and Lz, namely

L2Y k
l = l(l + 1)Y k

l , LzY
k
l = kY k

l . (B.38)

They are orthonormal, ∫
S2

(Y k
l )†Y k′

l′ dΩ = δll′δ
kk′ (B.39)

and the operators L± serve as ladder operators,

L±Y
k
l =

√
l(l + 1)− k(k ± 1)Y k±1

l . (B.40)
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In analogy to (B.22)-(B.24), we define the Pauli matrices in ”spherical coordinates” as

follows

σr = sin θ cosϕσ1 + sin θ sinϕσ2 + cos θ σ3 (B.41)

σθ =
1

r

(
cos θ cosϕσ1 + cos θ sinϕσ2 − sin θ σ3

)
, (B.42)

σϕ =
1

r sin θ

(
− sinϕσ1 + cosϕσ2

)
, (B.43)

with

(σr)2 = 1,
(
σθ
)2

=
1

r2
, (σϕ)2 =

1

r2 sin2 θ
.

From (B.34) we immediately see that the angular part of the Dirac equation is located in

the terms i(γθ∂θ + γϕ∂φ) which will translate into

σθ∂θ + σϕ∂φ = ~σ~∇− σr∂r =
σr

r
(~σ~r)(~σ~∇− σr∂r)

=
σr

r
(r∂r + i~σ(~r × ~∇)− r∂r) = −σ

r

r
~σ~L, (B.44)

where the position vector, Pauli vector and differential operator in spherical coordinates

are

~r = rr̂,

~σ = σ1x̂+ σ2ŷ + σ3ẑ = σrr̂ + rσθθ̂ + r sin θσϕϕ̂,

~∇ = ∂rr̂ +
θ̂

r
∂θ +

ϕ̂

r sin θ
∂ϕ,

respectively, and the identity (~σA)(~σB) = AB + i~σ(A×B) was used. Thus, from (B.44)

we get

~σ~L = −rσr(σθ∂θ + σϕ∂φ). (B.45)

For j = 1
2
, 3

2
, . . . and k = −j,−j + 1, . . . , j we introduce the spinor spherical harmonics

[172]

φkj−1/2 =

√ j+k
2j
Y
k−1/2
j−1/2√

j−k
2j
Y
k+1/2
j−1/2

 for j = l +
1

2
(B.46)

φkj+1/2 =

 √
j+1−k
2j+2

Y
k−1/2
j+1/2

−
√

j+1+k
2j+2

Y
k+1/2
j+1/2

 for j = l − 1

2
(B.47)
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If l = 0, only j = 1/2 is possible for (B.46) and (B.47) is omitted. These spinors are

orthonormal in accordance with (B.39),∫
S2

(φkj±1/2)†φk
′

j′±1/2dΩ = δjj′δ
kk′ , (B.48)∫

S2

(φkj±1/2)†φk
′

j′∓1/2dΩ = 0, (B.49)

they form a basis for square integrable functions over S2 for each of the two components

of the spinor and are eigenvectors of the operator K = ~σ~L+ 1. More precisely,

Kφkj−1/2 =
(
~σ~L+ 1

)
φkj−1/2 = (σ1Lx + σ2Ly + σ3Lz + 1)φkj−1/2

=

Lz + 1 L−

L+ −Lz + 1

φkj−1/2 = (j +
1

2
)φkj−1/2 (B.50)

Kφkj+1/2 = −(j +
1

2
)φkj+1/2 (B.51)

Furthermore, multiplication with σr gives an eigenvector of K, namely

Kσrφkj−1/2 =
(
−rσr

(
σθ∂θ + σϕ∂ϕ

)
+ 1
)
σrφkj−1/2

= −σrφkj−1/2 − rσr
(
σθσr∂θ + σϕσr∂ϕ

)
φkj−1/2

= −σrφkj−1/2 − σr
(
~σ~L
)
φkj−1/2

= −σrKφkj−1/2 = −(j +
1

2
)σrφkj−1/2, (B.52)

where we used

σθσr = −i sin θσϕ,

σϕσr =
i

sin θ
σθ,

~L = −i
(
~r × ~∇

)
= i

(
θ̂

sin θ
∂ϕ − ∂θϕ̂

)
,

~σ~L = ir

(
σθ

sin θ
∂ϕ − sin θσϕ∂θ

)
.
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Taking into account the normalization factors (B.48), we immediately see from (B.50)-

(B.52) that

K(σrφkj−1/2) = −(j +
1

2
)(σrφkj−1/2)⇐⇒ σrφkj−1/2 = φkj+1/2, (B.53)

K(σrφkj+1/2) = (j +
1

2
)(σrφkj+1/2)⇐⇒ σrφkj+1/2 = φkj−1/2. (B.54)

B.0.3 Radial Dirac equation

For the Dirac wavefunctions, we choose the ansatz

ψ+
jkω = e−iωt

φkj−1/2Φ+
1 (r)

iφkj+1/2Φ+
2 (r)

 , (B.55)

ψ−jkω = e−iωt

φkj+1/2Φ−1 (r)

iφkj−1/2Φ−2 (r)

 . (B.56)

A general solution of the Dirac equation can be written as a linear combination of these

wave functions, because one can obtain every combination of spherical harmonics in the

four spinor components. Substituting (B.55) into (B.34) gives

ω − qQ/r√
f

1 0

0 −1

φkj−1/2Φ+
1

iφkj+1/2Φ+
2

+ i
√
f

 0 σr

−σr 0

φkj−1/2
dΦ+

1

dr

iφkj+1/2
dΦ+

2

dr


− i
r

 0 σr

−σr 0

φkj−1/2Φ+
1

iφkj+1/2Φ+
2

+ i

 0 σθ∂θ + σϕ∂ϕ

−(σθ∂θ + σϕ∂ϕ) 0

φkj−1/2Φ+
1

iφkj+1/2Φ+
2


−mf

1 0

0 1

φkj−1/2Φ+
1

iφkj+1/2Φ+
2

 =

0

0


(B.57)
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By utilizing (B.45) and (B.50)-(B.54), (B.57) becomes

ω − qQ/r√
f

 φkj−1/2Φ+
1

−iφkj+1/2Φ+
2

−√f

φkj−1/2
dΦ+

2

dr

iφkj+1/2
dΦ+

1

dr

+
1

r

−(j + 1
2
)φkj−1/2Φ+

2

i(j + 1
2
)φkj+1/2Φ+

1


−mf

φkj−1/2Φ+
1

iφkj+1/2Φ+
2

 =

0

0


which gives the two following coupled differential equations

√
f
dΦ+

1

dr
+
ω − qQ/r√

f
Φ+

2 −
(j + 1/2)

r
Φ+

1 +mfΦ
+
2 = 0, (B.58)√

f
dΦ+

2

dr
− ω − qQ/r√

f
Φ+

1 +
(j + 1/2)

r
Φ+

2 +mfΦ
+
1 = 0. (B.59)

Following exactly the same procedure for (B.56) we get

√
f
dΦ−1
dr

+
ω − qQ/r√

f
Φ−2 +

(j + 1/2)

r
Φ−1 +mfΦ

−
2 = 0, (B.60)√

f
dΦ−2
dr
− ω − qQ/r√

f
Φ−1 −

(j + 1/2)

r
Φ−2 +mfΦ

−
1 = 0. (B.61)

Since (B.58), (B.60) and (B.59), (B.61) differ only on the sign of (j + 1/2) we can com-

pactify them by considering

ξ =

ξ+ = j + 1
2

ξ− = −(j + 1
2
)

(B.62)

so when ξ is positive we treat the system (B.58)-(B.59) and when it is negative we treat

(B.60)-(B.61). Since the goal is to study wavefunctions with j = 1
2
, 3

2
, . . . , the integer

ξ will take values ξ = ±1, ±2, . . . .2 This leads to the final coupled system of ordinary

differential equations

f
∂F

∂r
− ξ
√
f

r
F +

(
ω − qQ

r

)
G+mf

√
fG = 0, (B.63)

f
∂G

∂r
+
ξ
√
f

r
G−

(
ω − qQ

r

)
F +mf

√
fF = 0, (B.64)

2ξ+ appear when K acts on (B.46) with l = j − 1/2 and ξ− appear when K acts on (B.47) with
l = j + 1/2. So, considering the spinors (B.55), (B.56), if j = 1

2 , then ξ+ = 1 for l = 0, since l = j − 1/2,
and ξ− = −1 for l = 1, since l = j + 1/2. If j = 3

2 , then ξ+ = 2 for l = 1 and ξ− = −2 for l = 2 and so
on.
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where we set Φ+
1 (r) = Φ−1 (r) = F (r) and Φ+

2 (r) = Φ−2 (r) = G(r) for simplicity.

A complementary way to write the system (B.63), (B.64) in a different form comes by

performing the following transformation

R+ = F − iG→ iR+ = iF +G (B.65)

R− = −F − iG→ iR− = −iF +G. (B.66)

Then, by performing (B.63)−i(B.64) we obtain

dR+

dr∗
+ i

(
ω − qQ

r

)
R+ +

ξ
√
f

r
R− + imf

√
fR− = 0, (B.67)

and by performing -(B.63)−i(B.64) we obtain

dR−
dr∗
− i
(
ω − qQ

r

)
R− +

ξ
√
f

r
R+ − imf

√
fR+ = 0, (B.68)

where r∗ the tortoise coordinate defined as

dr∗ =
dr

f(r)
. (B.69)

B.0.4 The Dirac equation in Schrödinger-like form

To study the propagation of massless charged fermions in a spherically symmetric back-

ground we set mf = 0 in (B.63) and (B.64) to obtain

f
∂F

∂r
− ξ
√
f

r
F +

(
ω − qQ

r

)
G = 0, (B.70)

f
∂G

∂r
+
ξ
√
f

r
G−

(
ω − qQ

r

)
F = 0. (B.71)

By introducing a new coordinate

dr̄∗ =

(
1− qQ

rω

)
f

dr, (B.72)
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(B.70), (B.71) become

dF

dr̄∗
−WF + ωG = 0, (B.73)

dG

dr̄∗
+WG− ωF = 0, (B.74)

where

W =
ξ
√
f

r
(
1− qQ

rω

) . (B.75)

(B.73) and (B.74) are coupled first order ordinary differential equations which can be

decoupled by solving (B.73) with respect to G and plug it into (B.74) and vice versa. By

doing so we get the decoupled equations

d2F

dr̄2
∗

+
(
ω2 − V+

)
F = 0, (B.76)

d2G

dr̄2
∗

+
(
ω2 − V−

)
G = 0, (B.77)

with

V± = ±dW
dr̄∗

+W 2. (B.78)

It has been proven [173] that potentials related in this manner are supersymmetric

partners and are equispectral.

B.0.5 The Dirac equation in Eddington-Finkelstein coordinates

The ingoing Eddington-Finkelstein coordinates are obtained by replacing the t coordinate

with the new coordinate υ = t+r∗, where r∗ the tortoise coordinate defined in the previous

section. The metric in these coordinates can be written as

ds2 = −f(r)dυ2 + 2dυdr + r2(dθ2 + sin2 θ dϕ2), (B.79)

with the associated electromagnetic potential3

A = −Q
r
dυ = −Q

r
(dt+ dr∗) = −Q

r

(
dt+

dr

f(r)

)
. (B.80)

3Here, if we want to transform from the coordinate system (t, r, θ, ϕ) to (υ, r, θ, ϕ) then the components
of the potential will be Aµ = diag(−Q/r,−Q/rf, 0, 0) while if we are already working on the coordinate
system (υ, r, θ, ϕ) then the components of the potential will be Aµ = diag(−Q/r, 0, 0, 0).
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Similarly, the outgoing Eddington-Finkelstein coordinates are obtained by replacing t with

u = t− r∗ to get the metric

ds2 = −f(r)du2 − 2dudr + r2(dθ2 + sin2 θ dϕ2), (B.81)

with the associated electromagnetic potential4

A = −Q
r
du = −Q

r
(dt− dr∗) = −Q

r

(
dt− dr

f(r)

)
. (B.82)

A straightforward way to write down the Dirac equation (B.26) in the new coordinates is

to choose a new tetrad that reproduces either (B.79) or (B.81) with (B.3) and follow the

same process as before. An alternative way is to transform (B.34) in the new coordinates

(υ, r) or (u, r) with the associated transformed electromagnetic potential (B.80) or (B.82),

respectively.

Following the same procedure as before we write (B.34) now with non-zero Ar com-

ponent

i√
f
γt
∂

∂t
ψ+i

√
fγr

∂

∂r
ψ− i

r
γrψ+i

(
γθ

∂

∂θ
+ γϕ

∂

∂ϕ

)
ψ+

q√
f

(
γtAt + fγrAr

)
ψ−mfψ = 0.

(B.83)

B.0.5.1 Ingoing Eddington-Finkelstein coordinates

Performing the coordinate transformation υ = t + r∗ we have the following chain rule

expressions

∂

∂t
=

∂

∂υ

∂υ

∂t
+

∂

∂r

∂r

∂t
= ∂υ, (B.84)

∂

∂r
=

∂

∂υ

∂υ

∂r
+

∂

∂r

∂r

∂r
=
∂r∗
∂r

∂υ + ∂r =
∂υ
f

+ ∂r, (B.85)

4Here, if we want to transform from the coordinate system (t, r, θ, ϕ) to (u, r, θ, ϕ) then the components
of the potential will be Aµ = diag(−Q/r,Q/rf, 0, 0) while if we are already working on the coordinate
system (u, r, θ, ϕ) then the components of the potential will be Aµ = diag(−Q/r, 0, 0, 0).
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and Aµ = diag(−Q/r,−Q/rf, 0, 0), which will replace the corresponding derivatives in

(B.83), leading to

iγt√
f
∂υψ + i

√
fγr

(
∂υ
f

+ ∂r

)
ψ − i

r
γrψ + i

(
γθ

∂

∂θ
+ γϕ

∂

∂ϕ

)
ψ − γt qQ

r
√
f
ψ − γr qQ

r
√
f
ψ

−mfψ = 0.

(B.86)

By utilizing the ansatz

ψ+ = e−iωυ

φkj−1/2Φ+
1 (r)

iφkj+1/2Φ+
2 (r)

 , (B.87)

ψ− = e−iωυ

φkj+1/2Φ−1 (r)

iφkj−1/2Φ−2 (r)

 . (B.88)

we get

ω√
f

Φ+
1 + i

ω√
f

Φ+
2 −

√
f∂rΦ

+
2 −

ξ

r
Φ+

2 −
qQ

r
√
f

Φ+
1 − i

qQ

r
√
f

Φ+
2 −mfΦ

+
1 = 0, (B.89)

ω√
f

Φ+
2 − i

ω√
f

Φ+
1 +

√
f∂rΦ

+
1 −

ξ

r
Φ+

1 −
qQ

r
√
f

Φ+
2 + i

qQ

r
√
f

Φ+
1 +mfΦ

+
2 = 0, (B.90)

and

ω√
f

Φ−1 + i
ω√
f

Φ−2 −
√
f∂rΦ

−
2 +

ξ

r
Φ−2 −

qQ

r
√
f

Φ−1 − i
qQ

r
√
f

Φ−2 −mfΦ
−
1 = 0, (B.91)

ω√
f

Φ−2 − i
ω√
f

Φ−1 +
√
f∂rΦ

−
1 +

ξ

r
Φ−1 −

qQ

r
√
f

Φ−2 + i
qQ

r
√
f

Φ−1 +mfΦ
−
2 = 0, (B.92)

respectively, where ξ = j + 1/2. Since (B.90), (B.92) and (B.89), (B.91) differ only in the

sign of ξ we can compactify them, as follows, to obtain the Dirac equation for spin 1/2

particles in ingoing Eddington-Finkelstein coordinates

f∂rF −
ξ
√
f

r
F +

(
ω − qQ

r

)
G− i

(
ω − qQ

r

)
F +mf

√
fG = 0, (B.93)

f∂rG+
ξ
√
f

r
G−

(
ω − qQ

r

)
F − i

(
ω − qQ

r

)
G+mf

√
fF = 0, (B.94)

where we set Φ+
1 = Φ−1 = F , Φ+

2 = Φ−2 = G and ξ = ±1, ±2, . . . . Utilizing (B.65), (B.66)

and performing (B.93)−i(B.94) and -(B.93)−i(B.94) we can rewrite the previous set of
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equation in a simpler form

f∂rR+ +
ξ
√
f

r
R− + imf

√
fR− = 0, (B.95)

f∂rR− +
ξ
√
f

r
R+ − 2i

(
ω − qQ

r

)
R− − imf

√
fR+ = 0. (B.96)

B.0.5.2 Outgoing Eddington-Finkelstein coordinates

Performing the coordinate transformation u = t − r∗ we have the following chain rule

expressions

∂

∂t
=

∂

∂u

∂u

∂t
+

∂

∂r

∂r

∂t
= ∂u, (B.97)

∂

∂r
=

∂

∂u

∂u

∂r
+

∂

∂r

∂r

∂r
= −∂r∗

∂r
∂u + ∂r = −∂u

f
+ ∂r, (B.98)

and Aµ = diag(−Q/r,Q/rf, 0, 0), which will replace the corresponding derivatives in

(B.83), leading to

iγt√
f
∂uψ + i

√
fγr

(
−∂u
f

+ ∂r

)
ψ − i

r
γrψ + i

(
γθ

∂

∂θ
+ γϕ

∂

∂ϕ

)
ψ − γt qQ

r
√
f
ψ + γr

qQ

r
√
f
ψ

−mfψ = 0.

(B.99)

By utilizing the ansatz

ψ+ = e−iωυ

φkj−1/2Φ+
1 (r)

iφkj+1/2Φ+
2 (r)

 , (B.100)

ψ− = e−iωυ

φkj+1/2Φ−1 (r)

iφkj−1/2Φ−2 (r)

 . (B.101)

we get

ω√
f

Φ+
1 − i

ω√
f

Φ+
2 −

√
f∂rΦ

+
2 −

ξ

r
Φ+

2 −
qQ

r
√
f

Φ+
1 + i

qQ

r
√
f

Φ+
2 −mfΦ

+
1 = 0, (B.102)

ω√
f

Φ+
2 + i

ω√
f

Φ+
1 +

√
f∂rΦ

+
1 −

ξ

r
Φ+

1 −
qQ

r
√
f

Φ+
2 − i

qQ

r
√
f

Φ+
1 +mfΦ

+
2 = 0, (B.103)



Appendix B. Fermionic perturbations in spherically symmetric spacetimes 145

and

ω√
f

Φ−1 − i
ω√
f

Φ−2 −
√
f∂rΦ

−
2 +

ξ

r
Φ−2 −

qQ

r
√
f

Φ−1 + i
qQ

r
√
f

Φ−2 −mfΦ
−
1 = 0, (B.104)

ω√
f

Φ−2 + i
ω√
f

Φ−1 +
√
f∂rΦ

−
1 +

ξ

r
Φ−1 −

qQ

r
√
f

Φ−2 − i
qQ

r
√
f

Φ−1 +mfΦ
−
2 = 0, (B.105)

respectively, where ξ = j + 1/2. Since (B.103), (B.105) and (B.102), (B.104) differ only

in the sign of ξ we can compactify them, as follows, to obtain the Dirac equation for spin

1/2 particles in outgoing Eddington-Finkelstein coordinates

f∂rF −
ξ
√
f

r
F +

(
ω − qQ

r

)
G+ i

(
ω − qQ

r

)
F +mf

√
fG = 0, (B.106)

f∂rG+
ξ
√
f

r
G−

(
ω − qQ

r

)
F + i

(
ω − qQ

r

)
G+mf

√
fF = 0, (B.107)

where we set Φ+
1 = Φ−1 = F , Φ+

2 = Φ−2 = G and ξ = ±1, ±2, . . . . Utilizing (B.65), (B.66)

and performing (B.106)−i(B.107) and -(B.106)−i(B.107) we can rewrite the previous set

of equation in a simpler form

f∂rR+ +
ξ
√
f

r
R− + 2i

(
ω − qQ

r

)
R+ + imf

√
fR− = 0, (B.108)

f∂rR− +
ξ
√
f

r
R+ − imf

√
fR+ = 0. (B.109)
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Appendix C

The classical definition of β for

complex scalar fields in

Reissner-Nordström-de Sitter

spacetime

The RNdS spacetime is described by the metric

ds2 = −f(r)dt2 +
1

f(r)
dr2 + r2

(
dθ2 + sin2 θ dφ2

)
. (C.1)

The metric function reads

f(r) = 1− 2M

r
+
Q2

r2
− Λr2

3
=

Λ

3r2
(r − r0) (r − r−)(r − r+)(rc − r), (C.2)

where M, Q the mass and charge of the black hole, Λ the positive cosmological constant

and r0 < r− < r+ < rc with r0 = −(r− + r+ + rc) where r−, r+, rc the Cauchy, event

and cosmological horizon radius, respectively. The associated electromagnetic potential

of such a charged spacetime is

A = −Q
r
dt, (C.3)

so

Aν = −δ0
ν

Q

r
, (C.4)

Aν = gµνAµ = δν0
Q

rf(r)
. (C.5)
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To determine the regularity of the metric up to the CH we study the regularity of mode

solutions of the wave equation 2Ψ = PΨ = 0, there, where P a differential operator to

be determined. To do so, we change to outgoing Eddington-Finkelstein coordinates

u = t− r∗, dr∗ = dr/f(r), (C.6)

which are regular across the CH. By computing dt = du+ dr/f(r) the metric transforms

to

ds2 = −f(r)du2 − 2dudr + r2
(
dθ2 + sin2 θ dφ2

)
, (C.7)

where the level sets of u are null hypersurfaces transversal to the CH (parallel to the event

horizon). The inverse metric reads

∂s2 = f(r)∂2
r − 2∂u∂r + r−2

(
∂2
θ + sin−2 θ ∂2

φ

)
. (C.8)

The electromagnetic potential in the new coordinates will be

A = −Q
r
dt = −Q

r
du− Q

rf(r)
dr, (C.9)

which immediately give rise to a singularity at f(r−) = 0. If we add a pure gauge term

to the potential then at r = r− we have

Ãν = Aν +∇νχ, (C.10)

with χ = Qr∗/r−, ∂νχ = δ1
νQ/r−f(r) then

Ãν = −δ0
ν

Q

r
− δ1

ν

Q

rf(r)
+ ∂νχ = −δ0

ν

Q

r
, (C.11)

or simply

Ã = −Q
r
du, (C.12)

and we get rid of the singular terms. Consequently,

PΨ = ∇ν∇νΨ− iq∇ν
(
ÃνΨ

)
− iqÃν∇νΨ− q2ÃνÃνΨ− µ2Ψ. (C.13)
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The Christofel symbols in outgoing Eddington-Finkelstein coordinates are:

Γ0
00 = −f

′(r)

2
, Γ0

22 = r, Γ0
33 = r sin2 θ

Γ1
00 =

f(r)f ′(r)

2
, Γ1

10 = Γ1
01 =

f ′(r)

2
, Γ1

22 = −rf(r), Γ1
33 = −rf(r) sin2 θ

Γ2
21 = Γ2

12 =
1

r
, Γ2

33 = − cos θ sin θ (C.14)

Γ3
13 = Γ3

31 =
1

r
, Γ3

23 = Γ3
32 =

cos θ

sin θ

Utilizing

∇νΨ = ∂υΨ,

∇νÃν = gµν∇µgκνÃ
κ = ∇µÃµ = ∂µÃ

ν + ΓµµνÃ
ν = ∂µg

κνÃκ + Γµµνg
λνÃλ

= ∂rg
01Ã0 + Γ2

21g
01Ã0 + Γ3

31g
01Ã0 =

Q

r2
,

∇ν
(
ÃνΨ

)
= Ψ∇νÃν + Ãν∇νΨ =

Q

r2
Ψ + Ãν∂

νΨ =
Q

r2
Ψ + gµνÃ

µgκν∂κΨ

=
Q

r2
Ψ + δκµÃ

µ∂κΨ =
Q

r2
Ψ + Ãµ∂µΨ,

ÃνÃν = gµνÃµÃν = 0,

we get

PΨ = gµν∇µ (∂νΨ)− iqQ

r2
Ψ− 2iqÃν∂νΨ− µ2Ψ

=
1√
−g

∂µ
(
gµν
√
−g∂νΨ

)
− iqQ

r2
Ψ− 2iq gµνÃµ∂νΨ− µ2Ψ, (C.15)

where g = det(gµν). Proceeding with the calculation we get

PΨ = − 1

r2
∂u
(
r2∂rΨ

)
− 1

r2
∂r
(
r2∂uΨ

)
+

1

r2
∂r
(
fr2∂rΨ

)
+

1

r2

(
1

sin θ
∂θ(sin θ∂θ) +

1

sin2 θ
∂2
ϕ

)
Ψ

− iqQ

r2
Ψ− 2iq

Q

r
∂rΨ− µ2Ψ

= −∂u∂rΨ−
1

r2

(
2r∂u + r2∂r∂u

)
Ψ +

1

r2
∂r
(
fr2∂r

)
Ψ +

L2

r2
Ψ− iqQ

r2
Ψ− 2iq

Q

r
∂rΨ− µ2Ψ,

(C.16)
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where L2 the square angular momentum operator in spherical coordinates and ∂t = ∂u.

Finally, we find

fP =
f

r2
∂r(fr

2∂r)−
2f

r
∂r(r∂u) +

fL2

r2
− f iqQ

r2
− 2f

iqQ

r
∂r − fµ2. (C.17)

Acting on modes of the form Ψ ∼ e−iωuψ(r, θ, ϕ) the operator fP becomes

fPΨ =
f

r2
∂r(fr

2∂r)ψ + f
2iω

r
∂rra+

fL2

r2
ψ − f iqQ

r2
ψ − 2

iqQ

r
(f∂r)ψ − fµ2ψ. (C.18)

It can be shown that mode solution of P are conormal at r = r−, meaning that they grow

at the same rate |r− r−|λ (see Section 5.4 for the asymptotic behavior of mode solutions

at the CH). Thus, if ψ ∼ |r − r−|λ then the following terms have regularity

fL2

r2
ψ ∼ |r − r−|λ|r − r−| ∼ |r − r−|λ+1,

f
iqQ

r2
ψ ∼ |r − r−|λ|r − r−| ∼ |r − r−|λ+1,

fµ2ψ ∼∼ |r − r−|λ|r − r−| ∼ |r − r−|λ+1,

where f ∼ |r − r−| near the CH. This means that these terms have one order higher

regularity than the rest so they can be neglected.1 Neglecting these terms we get regular-

singular ordinary differential equation near r = r− of the form

P̃ = (f∂r)
2 + 2iω(f∂r)−

2iqQ

r
(f∂r). (C.19)

It is convenient to use f as a radial coordinate instead of r, so ∂r = f ′∂f = f ′(r−)∂f near

the CH plus irrelevant terms. Moreover, the surface gravity at the CH is κ− = −f ′(r−)/2

so f∂r = −2κ−(f∂f ). Thus, (C.19) becomes

P̃

4κ2
−

= (f∂f )
2 − iω

κ−
(f∂f ) +

iqQ

κ−r−
(f∂f ) = f∂f

(
f∂f −

(
iω

κ−
− iqQ

κ−r−

))
. (C.20)

It remains to calculate the allowed growth rates λ, i.e. indicial roots of the differential

operator (C.20). Acting with |f |λ we get

P̃

4κ2
−
|f |λ = λ

(
λ−

(
iω

κ−
− iqQ

κ−r−

))
|f |λ, (C.21)

1For example, if λ = −1/2 then fλ = 1/
√
f which diverges rapidly at r = r− while fλ+1 =

√
f which

doesn’t diverge at r = r−.
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where f∂f |f |λ = λ|f |λ and (f∂f )
2|f |λ = (f∂f )(f∂f )|f |λ = (f∂f )λ|f |λ = λ2|f |λ. The

indicial roots are the roots of the quadratic polynomial (C.21), namely

λ1 = 0, λ2 =
iω

κ−
− iqQ

κ−r−
. (C.22)

The root λ1 = 0 corresponds to mode solutions which are approximately constant, i.e.

remain smooth at the CH and are irrelevant for SCC, while λ2 corresponds to asymptotics

|f |λ2 ∼ |r − r−|
iω
κ− |r − r−|

− iqQ
κ−r− . (C.23)

If we consider QNMs of the form ω = ωR + iωI , with ωI < 0, then

|f |λ2 ∼ |r − r−|
− ωI
κ− |r − r−|

i
(
ωR
κ−
− qQ
κ−r−

)
. (C.24)

The second factor is purely oscillatory, so the only relevant factor for SCC is |r − r−|
α
κ−

with α := −Im(ω) the spectral gap. This function lies in the Sobolev space Hm for all

m < 1
2

+ α
κ−

. For the function to belong in H1
loc the following should hold

β ≡ α

κ−
> 1− 1

2
=

1

2
. (C.25)
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Appendix D

The classical definition of β for scalar

fields in higher-dimensional

Reissner-Nordström-de Sitter

spacetime

To determine the regularity of the metric up to the CH we study the regularity of QNMs

at the CH. To do so, we change to outgoing Eddington-Finkelstein coordinates which are

regular there. The outgoing Eddington-Finkelstein coordinates are obtained by replacing

t with u = t− r∗ in (9.2) to get

ds2 = −f(r)du2 − 2dudr + r2dΩ2
d−2. (D.1)

By expanding the Klein-Gordon equation

2Ψ = 0, (D.2)

we get PΨ = 0 where the operator P reads

PΨ = −2∂u∂rΨ−
d− 2

r
∂uΨ +

1

rd−2
∂r
(
frd−2∂rΨ

)
+

∆Ωd−2

rd−2
Ψ, (D.3)

where ∆Ωd−2
the Laplace-Beltrami operator [17]. By acting on mode solutions of the form

Ψ ∼ e−iωuψ we obtain

fPΨ = 2iωf∂rψ +
iω(d− 2)

rd−2
fψ +

1

rd−2
f∂r

(
frd−2∂rψ

)
+

∆Ωd−2

rd−2
fψ. (D.4)
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It can be shown that the mode solutions of (D.4) are conormal at r = r−, meaning that

they grow at the same rate |r − r−|λ. Thus, if ψ ∼ |r − r−|λ then the second and last

term have higher regularity than the rest, since f ∼ |r − r−| near the CH. This means

that these terms can be neglected, which leads to a regular-singular ordinary differential

equation near r = r− of the form P̃ψ = fPψ = 0 with the operator

P̃ = 2iωf∂r + (f∂r)
2 . (D.5)

It is convenient to use f as a radial coordinate instead of r, so ∂r = f ′∂f = f ′(r−)∂f

near the CH modulo irrelevant terms. Moreover, the surface gravity at the CH is κ− =

−f ′(r−)/2 so f∂r = −2κ−(f∂f ). Thus, (D.5) becomes

P̃

4κ2
−

= (f∂f )
2 − iω

κ−
(f∂f ) = f∂f

(
f∂f −

iω

κ−

)
. (D.6)

It remains to calculate the allowed growth rates λ, i.e. indicial roots of the differential

operator (D.6). Acting with |f |λ we get

P̃

4κ2
−
|f |λ = λ

(
λ− iω

κ−

)
|f |λ. (D.7)

The indicial roots are the roots of the quadratic polynomial (D.7), namely

λ1 = 0, λ2 =
iω

κ−
. (D.8)

The root λ1 = 0 corresponds to mode solutions which are approximately constant, i.e.

remain smooth at the CH and are irrelevant for SCC, while λ2 corresponds to asymptotics

|f |λ2 ∼ |r − r−|
iω
κ− . (D.9)

If we consider QNMs of the form ω = ωR + iωI , with ωI < 0 then

|f |λ2 ∼ |r − r−|
− ωI
κ− |r − r−|

iωR
κ− . (D.10)

The second factor is purely oscillatory, so the only relevant factor for SCC is |r − r−|
α
κ−

with α := −Im(ω) the spectral gap. This function lies in the Sobolev space Hs for all

s < 1
2

+ α
κ−

.

Since we are considering scalar fields, we require locally square integrable gradient of
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the scalar field at the CH1, i.e., the mode solutions should belong to the Sobolev space

H1
loc for the Einstein’s field equations to be satisfied weakly at the CH. This justifies our

search for β = −Im(ω)/κ− > 1/2.

1The energy-momentum tensor for scalar fields is Tµν ∼ (∂ψ)2.
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Appendix E

The classical definition of β for

charged fermions in

Reissner-Nordström-de Sitter

spacetime

To determine the regularity of the metric up to the CH we study the regularity of mode

solutions there. To do so, we change to outgoing Eddington-Finkelstein coordinates which

are regular at the CH. The outgoing Eddington-Finkelstein coordinates are obtained by

replacing t with u = t− r∗ in (B.12) to get

ds2 = −f(r)du2 − 2dudr + r2(dθ2 + sin2 θ dϕ2), (E.1)

with the associated electromagnetic potential1

A = −Q
r
du = −Q

r
(dt− dr∗) = −Q

r

(
dt− dr

f(r)

)
. (E.2)

A straightforward way to write down the Dirac equation (B.26) in the new coordinates

is to choose a new tetrad that reproduces (E.1) by satisfying (B.3) and follow the same

process as before. An alternative way is to transform (B.34) in the new coordinates (u, r)

with the associated transformed electromagnetic potential (E.2).

Following the same procedure as above we write (B.34) now with non-zero Ar compo-

1Here, if we want to transform from the coordinate system (t, r, θ, ϕ) to (u, r, θ, ϕ) then the components
of the potential will be Aµ = diag(−Q/r,+Q/rf, 0, 0) while if we are already working on the coordinate
system (u, r, θ, ϕ) then the components of the potential will be Aµ = diag(−Q/r, 0, 0, 0).
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nent

i√
f
γt
∂

∂t
ψ+i

√
fγr

∂

∂r
ψ− i

r
γrψ+i

(
γθ

∂

∂θ
+ γϕ

∂

∂ϕ

)
ψ+

q√
f

(
γtAt + fγrAr

)
ψ−mfψ = 0.

(E.3)

Performing the coordinate transformation u = t − r∗ we have the following chain rule

expressions

∂

∂t
=

∂

∂u

∂u

∂t
+

∂

∂r

∂r

∂t
= ∂u, (E.4)

∂

∂r
=

∂

∂u

∂u

∂r
+

∂

∂r

∂r

∂r
= −∂r∗

∂r
∂u + ∂r = −∂u

f
+ ∂r, (E.5)

which will replace the corresponding derivatives in (E.3), leading to

iγt√
f
∂uψ + i

√
fγr

(
−∂u
f

+ ∂r

)
ψ − i

r
γrψ + i

(
γθ

∂

∂θ
+ γϕ

∂

∂ϕ

)
ψ

+
q√
f

(
γtAt + fγrAr

)
ψ −mfψ = 0. (E.6)

By utilizing the ansatz

ψ+ = e−iωυ

φkj−1/2F (r)

iφkj+1/2G(r)

 , (E.7)

ψ− = e−iωυ

φkj+1/2F (r)

iφkj−1/2G(r)

 , (E.8)

we get

f∂rF −
ξ
√
f

r
F +

(
ω − qQ

r

)
G+ i

(
ω − qQ

r

)
F +mf

√
fG = 0, (E.9)

f∂rG+
ξ
√
f

r
G−

(
ω − qQ

r

)
F + i

(
ω − qQ

r

)
G+mf

√
fF = 0, (E.10)

where ξ = ±1,±2, . . . . Since the mass-to-charge ratio of the electron is very small (∼
10−11 kg/C) we will consider massless fermions propagating on the fixed background of

RNdS. By setting mf = 0 in (E.9) and (E.10) and solving (E.9) with respect to G, we
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can plug in the resulting equation into (E.10) to get[
−2ξrωf 3/2

qQ− rω
− ξr

√
ff ′ − 2ξ2f

]
F +

[
2qQrf 2

qQ− rω
+ 2rf (−2iqQ+ 2irω + rf ′)

]
F ′(r)

+2r2f 2F ′′(r) = 0.

(E.11)

Using

2r2f (fF ′(r))
′
= 2r2ff ′F ′(r) + 2r2f 2F ′′(r) (E.12)

we can rewrite the previous equation as 2

− 2ξωf 3/2

r(qQ− rω)
F − ξ

√
f

r
f ′F − 2

ξ2f

r2
F +

2qQf

r(qQ− rω)
f∂rF −

4iqQ

r
f∂rF + 4iωf∂rF

+2(f∂r)
2F = 0.

(E.13)

It can be shown that mode solution of (E.13) are conormal at r = r−, meaning that they

grow at the same rate |r − r−|λ. Thus, if F ∼ |r − r−|λ then the first four terms have

regularity

2ξωf 3/2

r−(qQ− r−ω)
F ∼ |r − r−|λ|r − r−|3/2 ∼ |r − r−|λ+3/2,

ξ
√
f

r−
f ′(r−)F ∼ |r − r−|λ|r − r−|λ+1/2 ∼ |r − r−|λ+1/2,

2ξ2f

r2
−
F ∼ |r − r−|λ|r − r−| ∼ |r − r−|λ+1,

2qQf

r−(qQ− r−ω)
f∂rF ∼ λ|r − r−|λ−1|r − r−|2 ∼ |r − r−|λ+1,

where f ∼ |r − r−| near the CH. This means that these terms have regularity of higher

order comparing to the rest so they can be neglected. Neglecting these terms we get a

regular-singular ordinary differential equation near r = r− of the form PF = 0 with the

operator3

P = (f∂r)
2 + 2iω(f∂r)−

2iqω

r
(f∂r). (E.14)

2Here, we have already acted on modes of the spinor form (E.7) and (E.8) to decouple the angular
and radial part of the Dirac equation so we end up with a radial equation for the field F (r) or G(r),
respectively.

3The same operator arises for the field G with PG = 0 by following exactly the same steps.



160

It is convenient to use f as a radial coordinate instead of r, so ∂r = f ′∂f = f ′(r−)∂f near

the CH plus irrelevant terms. Moreover, the surface gravity at the CH is κ− = −f ′(r−)/2

so f∂r = −2κ−(f∂f ). Thus, (E.14) becomes

P

4κ2
−

= (f∂f )
2 − iω

κ−
(f∂f ) +

iqQ

κ−r−
(f∂f ) = f∂f

(
f∂f −

(
iω

κ−
− iqQ

κ−r−

))
. (E.15)

It remains to calculate the allowed growth rates λ, i.e. indicial roots of the differential

operator (E.15). Acting with |f |λ we get

P

4κ2
−
|f |λ = λ

(
λ−

(
iω

κ−
− iqQ

κ−r−

))
|f |λ, (E.16)

where f∂f |f |λ = λ|f |λ and (f∂f )
2|f |λ = (f∂f )(f∂f )|f |λ = (f∂f )λ|f |λ = λ2|f |λ. The

indicial roots are the roots of the quadratic polynomial (E.16), namely

λ1 = 0, λ2 =
iω

κ−
− iqQ

κ−r−
. (E.17)

The root λ1 = 0 corresponds to mode solutions which are approximately constant, i.e.

remain smooth at the CH and are irrelevant for SCC, while λ2 corresponds to asymptotics

|f |λ2 ∼ |r − r−|
iω
κ− |r − r−|

− iqQ
κ−r− . (E.18)

If we consider quasinormal modes of the form ω = ωR + iωI , with ωI < 0, then

|f |λ2 ∼ |r − r−|
− ωI
κ− |r − r−|

i
(
ωR
κ−
− qQ
κ−r−

)
. (E.19)

The second factor is purely oscillatory, so the only relevant factor for SCC is |r − r−|
α
κ−

with α := −Imω the spectral gap. This function lies in the Sobolev space Hm for all

m < 1
2

+ α
κ−

. In this case, the Einstein-Hilbert stress-energy tensor of the massless

fermionic field Ψ lying on the right-hand-side of Einstein’s equations has the form [48]

Tµν =
i

4

(
Ψ†Gµ(DνΨ) + Ψ†Gν(DµΨ)− (DµΨ)†GνΨ− (DνΨ)†GµΨ

)
. (E.20)

and again this leads to the requirement of square integrability of the gradient of the

fermionic field Ψ.4 Thus, the mode solutions should belong to the Sobolev space H1
loc for

our metric to make sense as a weak solution of Einstein’s field equations at the CH. This

4
∫
drΨ†GrDrΨ ≤ 1

2

∫
(Ψ†Gr)2 + 1

2

∫
(DrΨ)2 where (Gr)2 = 0 at the CH.
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provides the justification for our search for BH parameters for which β ≡ α/κ− > 1/2.
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Appendix F

Superradiant instability of charged

scalar fields in

Reissner-Nordström-de Sitter

spacetime

In this appendix, we take a thorough look at the instability that arises in spherically-

symmetric charged scalar perturbations of RNdS spacetime. The setup is the 4−dimensional

RNdS spacetime with line element

ds2 = −f(r)dt2 +
1

f(r)
dr2 + r2

(
dθ2 + sin2 θ dφ2

)
. (F.1)

The metric function is

f(r) = 1− 2M

r
+
Q2

r2
− Λr2

3
, (F.2)

where M, Q the mass and charge of the black hole, Λ > 0 the cosmological constant. The

associated electromagnetic potential sourced by such charged spacetime is

A = −Q
r
dt. (F.3)

The propagation of a massive charged scalar field on a fixed RNdS background is governed

by the Klein-Gordon equation

(DνDν − µ2)Ψ = 0, (F.4)
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where µ, q the mass and charge of the field, respectively, and Dν = ∇ν − iqAν the

covariant derivative. By expanding Ψ in terms of spherical harmonics with harmonic

time dependence we obtain the radial master equation

d2ψ

dr2
∗

+
[
(ω − Φ(r))2 − V (r)

]
ψ = 0 , (F.5)

where Φ(r) = qQ/r is the electrostatic potential and dr∗ = dr/f(r) the tortoise coordi-

nate.
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Figure F.1: Real (left) and imaginary (right) part of a charged massless scalar pertur-

bation with l = 0 on a fixed RNdS with Q/M = 0.5 (top panel) and Q = 0.999Qmax

(bottom panel) versus the charge coupling qQ. Different colors designate distinct choices

of cosmological constants ΛM2.

The effective potential for massive scalar perturbations is

V (r) = f(r)

(
µ2 +

l(l + 1)

r2
+
f ′(r)

r

)
. (F.6)
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Figure F.2: Real (left) and imaginary (right) part of a charged massless scalar perturbation

with l = 0 on a fixed RNdS with ΛM2 = 0.05 versus the charge coupling qQ. Different

colors designate distinct choices of black hole charges Q/M .

The boundary conditions for QNMs are

ψ ∼


e−i(ω−Φ(r+))r∗ , r → r+,

e+i(ω−Φ(rc))r∗ , r → rc.

(F.7)

Due to the underlying symmetry of (F.5) Re(ω) → −Re(ω) and Φ(r) → −Φ(r), we will

consider only cases where qQ > 0.

It has been shown in Chapter 10 that for superradiance to occur in d−dimensional

RNdS the following inequality must hold:

Φ(rc) < ω < Φ(r+), (F.8)

which designates that the amplitude of the reflected wave is larger than the amplitude of

the incident wave.

In the following figures, we present the superradiant instability found for the l = 0

charged scalar perturbation in [60] and we analyze it for various BH parameters.

In figure F.1 we show the unstable l = 0 perturbation versus the charge coupling qQ

for various cosmological constants. The modes originate from ω = 0, the zero QNM of

pure dS space. The real part originates from ωR = 0, increases monotonously with qQ

and grown faster for larger ΛM2. The imaginary part originates from ωI = 0, grows to a

maximum and then decreases till ωI becomes negative again. The region where ωI > 0 is

the region of instability where superradiance can occur. It evident that as ΛM2 increases,
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the unstable mode reaches a maximal imaginary part and beyond that point decreases

while for sufficiently large cosmological constants no instabilities are found.

The real parts of the unstable modes are very weakly dependent on the BH charge

Q/M . For a large cosmological constant, and small Q/M we can see that no instabilities

arise. With the increment of the BH charge, though, instabilities still arise. The former

is demonstrated in Fig. F.2.

The peak of instability seems to occur close to extremality, and for that reason, we

depict a set of specific parameters that minimizes the instability timescale and track the

unstable mode for various ΛM2. In Fig. F.3 (right panel) we demonstrate that the

maximal imaginary part is obtained at extremality, with ωI ∼ 0.0018. As it turns out,

the parameters chosen in [60] are a very good choice to test SCC and at the same time

demonstrate the contribution of the superradiant instability.
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Figure F.3: Left: Imaginary part of the l = 0 charged massless scalar perturbation on

a fixed RNdS with Q = 0.5 (blue) and Q = 0.999Qmax (red) versus the cosmological

constant ΛM2. The charge coupling is qQ = 0.05. Right: Imaginary part of the l = 0

charged massless scalar perturbation on a fixed RNdS with Q = 0.5, qQ = 0.48 (blue)

and Q = 0.999Qmax, qQ = 0.43 (red) versus the cosmological constant ΛM2. The charge

couplings for each Q are chosen to maximize the imaginary part of ω. The maximal

Im(ω) ∼ 0.0018 is achieved at extremality for ΛM2 = 0.007 and qQ = 0.43. The vertical

dashed lines designate the maximal cosmological constant for each choice of Q (ΛmaxM
2 =

0.121555 for Q/M = 0.5 and ΛmaxM
2 = 0.218815 for Q = 0.999Qmax).

In Fig. F.4 we demonstrate that even massive charged scalar perturbations can give

rise to instabilities, but a small scalar mass µM is proven to be enough to stabilize the

system. As the scalar mass increases, two critical charge couplings arise, qQmin beyond
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which instabilities arise and qQmax, beyond which stability is restored (see Fig. F.5). For

a proper scalar mass and BH parameters, qQmin = qQmax, which designates that at this

point there is only a purely oscillatory mode that does not decay. This might be a proper

set of parameters where spontaneous scalarization of the BH can happen.
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Figure F.4: Imaginary part of the l = 0 charged scalar perturbation on a fixed RNdS

with Q/M = 0.5 (left) and Q = 0.999Qmax (right) versus the charge coupling qQ. The

cosmological constant is ΛM2 = 0.005. Different colors designate distinct choices of scalar

mass µM .
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Figure F.5: Critical charges qQc(min) and qQc(max) versus the scalar mass µM . The

perturbation has angular momentum l = 0 and propagates on a fixed RNdS with ΛM2 =

0.005, Q = 0.5 (left) and Q = 0.999Qmax (right).

Although the calculations arise from highly precise spectral methods which has been

tested through time, we performed another test to justify our results by comparing the

unstable QNMs with the ones extracted by time evolutions based on the method in [129].
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The extracted modes from the time evolution data show great agreement with our spectral

results. They also justify that even for l = 0 massive, charged scalar perturbations in

RNdS, we still have growing evolution of the perturbations with respect to time (see Fig.

F.6). In table F.1 we show that all massless perturbations satisfy the superradiant relation

(F.8). The same hold for some massive perturbations as well. The increment of the scalar

beyond a specific value leads to stable modes that are not superradiant.

Q/M = 0.5

ΛM2 = 0.005

qQ ω qQ/rc qQ/r+

0.005 0.00023 + 3.7×10−7i 0.00021 0.00266

0.05 0.00229 + 0.00004 i 0.00213 0.02663

0.5 0.02577 + 0.00159 i 0.02134 0.26625

1 0.05322 - 0.00271 i 0.04268 0.53251

5 0.21907 - 0.01736 i 0.21338 2.66253

10 0.42966 - 0.01832 i 0.42677 5.32507

ΛM2 = 0.05

qQ ω qQ/rc qQ/r+

0.005 0.00092 - 3.2×10−7i 0.00077 0.00249

0.05 0.00925 - 0.00003 i 0.00773 0.02486

0.5 0.09222 - 0.00430 i 0.07734 0.24859

1 0.17777 - 0.01595 i 0.15468 0.49719

5 0.78240 - 0.04099 i 0.77338 2.48594

10 1.55129 - 0.04204 I 1.54676 4.97188

Q/Qmax = 0.999

ΛM2 = 0.005

qQ ω qQ/rc qQ/r+

0.005 0.00022 + 7×10−7 i 0.00021 0.00477

0.05 0.00224 + 0.00006 i 0.00213 0.04769

0.5 0.02599 + 0.00169 i 0.02132 0.47694

1 0.05320 - 0.00278 i 0.04264 0.95388

5 0.21892 - 0.01739 i 0.21322 4.76941

10 0.42934 - 0.01836 i 0.42643 9.53881

ΛM2 = 0.05

qQ ω qQ/rc qQ/r+

0.005 0.00086 + 2.2× 10−6 i 0.00076 0.00461

0.05 0.00872 + 0.00016 i 0.00761 0.04608

0.5 0.09225 - 0.00311 i 0.07612 0.46082

1 0.17715 - 0.01602 i 0.15225 0.92163

5 0.77125 - 0.04331 i 0.76123 4.60816

10 1.52749 - 0.04455 i 1.52245 9.21631

ΛM2 = 0.005, Q/Qmax = 0.999, qQ = 0.45

µM ω qQ/rc qQ/r+

10−3 0.02305 + 0.00173 i 0.01919 0.42925

10−2 0.02280 + 0.00107 i 0.01919 0.42925

2× 10−2 0.02202 - 0.00098 i 0.01919 0.42925

3× 10−2 0.02054 - 0.00458 i 0.01919 0.42925

4× 10−2 0.01789 - 0.01007 i 0.01919 0.42925

5× 10−2 0.01263 - 0.01796 i 0.01919 0.42925

ΛM2 = 0.05, Q/Qmax = 0.999, qQ = 0.2

µM ω qQ/rc qQ/r+

10−3 0.03624 + 0.00063 i 0.03045 0.18433

10−2 0.03619 + 0.00044 i 0.03045 0.18433

5× 10−2 0.03497 - 0.00418 i 0.03045 0.18433

10−1 0.03008 - 0.02012 i 0.03045 0.18433

1.2× 10−1 0.02604 - 0.03086 i 0.03045 0.18433

1.4× 10−1 0.01911 - 0.04555 i 0.03045 0.18433

Table F.1: Dominant l = 0 massless/massive charged scalar modes in RNdS spacetime

for various parameters.
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Figure F.6: Time evolution of the l = 0 charged scalar perturbation on a fixed RNdS

background, where Q/M = 0.5, qQ = 0.45, ΛM2 = 0.005 and µM = 0 (left), µM = 10−2

(right). The spectral prediction yields ωspc = 0.0229 + 0.0016i while the time evolution

yields ωevl = 0.0228 + 0.0016i for the massless case and ωspc = 0.0226 + 0.0009i, ωevl =

0.0226 + 0.0009i for the massive case. Both modes satisfy the superradiant condition.
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black hole. Eur. Phys. J., C73(1):2274, 2013.



Bibliography 189

[222] Ran Li. Superradiant instability of charged massive scalar field in Kerr-Newman-

anti-de Sitter black hole. Phys. Lett., B714:337–341, 2012.

[223] Ran Li and Junkun Zhao. Numerical study of superradiant instability for charged

stringy black hole–mirror system. Phys. Lett., B740:317–321, 2015.

[224] Ran Li, Jun-Kun Zhao, and Yan-Ming Zhang. Superradiant Instability of D-

Dimensional Reissner—Nordström Black Hole Mirror System. Commun. Theor.

Phys., 63(5):569–574, 2015.

[225] Ran Li and Junkun Zhao. Superradiant instability of charged scalar field in stringy

black hole mirror system. Eur. Phys. J., C74(9):3051, 2014.

[226] Ran Li, Yu Tian, Hong-bao Zhang, and Junkun Zhao. Time domain analysis of

superradiant instability for the charged stringy black hole–mirror system. Phys.

Lett., B750:520–527, 2015.

[227] Hideo Kodama, R. A. Konoplya, and Alexander Zhidenko. Gravitational instability

of simply rotating AdS black holes in higher dimensions. Phys. Rev., D79:044003,

2009.

[228] Mengjie Wang and Carlos Herdeiro. Superradiant instabilities in a D-dimensional

small Reissner-Nordström-anti-de Sitter black hole. Phys. Rev., D89(8):084062,

2014.

[229] Peter Collas and David Klein. The Dirac equation in general relativity, a guide for

calculations. 2018.


	Introduction
	I Black Holes, Quasinormal Modes and Strong Cosmic Censorship
	Causal structure of black holes
	Linear perturbations of black holes
	Superradiance: an overview
	Black-hole interiors and Strong Cosmic Censorship

	II Strong Cosmic Censorship in charged black-hole spacetimes
	Quasinormal modes and Strong Cosmic Censorship
	Strong Cosmic Censorship in charged black-hole spacetimes: still subtle
	Charged Fermions and Strong Cosmic Censorship
	Strong Cosmic Censorship in higher-dimensional Reissner-Nordström-de Sitter spacetime

	III Superradiant instabilities in charged black-hole spacetimes
	Instability of higher-dimensional de Sitter black holes
	Appendix Scalar perturbations in spherically symmetric spacetimes
	Appendix Fermionic perturbations in spherically symmetric spacetimes
	Appendix The classical definition of  for complex scalar fields in Reissner-Nordström-de Sitter spacetime
	Appendix The classical definition of  for scalar fields in higher-dimensional Reissner-Nordström-de Sitter spacetime
	Appendix The classical definition of  for charged fermions in Reissner-Nordström-de Sitter spacetime
	Appendix Superradiant instability of charged scalar fields in Reissner-Nordström-de Sitter spacetime


